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Abstract

By setting interest rates, monetary policy affects the cost of carrying inventories. We build
a model to capture the resulting “cost-of-carry channel” of monetary policy, finding it to yield
interesting non-linearities. We begin with a static model showing that higher inventory costs
drive firms, especially those with larger inventories, to reduce prices. Extending this to a
dynamic model where firms face distinct demand shocks, we first show in a tractable model
with only high and low demand shocks that firms with inventories reduce prices as carrying costs
rise, while others may increase them. In aggregate, higher inventory levels make prices more
responsive to tighter monetary policy. Finally, a quantitative model with firm heterogeneity
and idiosyncratic demand shocks reveals that prices should be more sensitive to the stance of
monetary policy when inventory levels are higher (effectively leaving sellers with less market
power). By drawing on data from the US housing market, we are able to test this hypothesis –
finding strong support for the cost-of-carry channel. Central banks may therefore wish to pay
close attention to inventory levels, as they could matter for the strength of monetary policy
transmission to inflation.
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1 Introduction

In this paper, we develop an inventory model to capture the cost-of-carry channel of monetary
policy. This captures the notion that, by setting interest rates, the central bank also shapes the
costs of carrying inventories – and thereby firms’ incentives to do so. Since changing prices is one
way to go about inventory management, there may well be important links from the cost of carrying
inventories, to inflation dynamics. In addition, change in inventories affect the demand side effect
of the economy, and thus price dynamics through indirect effects.

From a narrative point of view, both commentators and businesses themselves frequently refer
to inventory levels when discussing pricing decisions. As for example noted by Robinson (2022), in
an Investors Chronicle article aptly titled “Interest rates could spell trouble for inventories, liquidity,
and IPOs”:

Carrying costs can rise appreciably as interest rates climb, a worrisome prospect given
that they can represent an estimated 25-30 per cent of overall inventory value.

This has become a more acute issue since the pandemic, as companies accelerated the
trend towards building resilience into supply chains by increasing inventory levels. Nike is
merely the latest big retailer to warn that, along with unfavourable currency movements,
its earnings have come under pressure through the inventory-build it undertook following
the pandemic and the subsequent discounts aimed at alleviating the situation.
Part of the sportswear giant’s profit shortfall will be linked to increased carrying costs.
[Emphasis added]

While the above quote mentions Nike, other companies have also alluded to their inventory
levels in relation to their pricing decisions. Trudell (2024) for example mentions how “Tesla is slashing
prices (...) in a bid to clear its biggest-ever stockpile. (...) Tesla is offering the deals after producing
46,561 more vehicles than it delivered in the first quarter, adding more cars to inventory than
ever before”. Similar considerations have been raised in relation to retailers,1 consumer goods firm
Unilever (Dominguez 2023), while Williamson (2023) notes how “destocking policies are meanwhile
adding to the downturn in pricing power.”

It is interesting to note the timing of these articles, in particular how they post-date the
recent rise in interest rates (with some of them explicitly referring to this development). Consulting
firms specializing in inventory management frequently point out that “lean” inventory management
becomes more consequential when rates are higher. SAFIO Solutions, for example, notes on their
website:2 “As interest rates increase (...) the costs of carrying excess inventory will be increasing
as well, impacting your company’s bottom line.” It then goes on to mention that “capital costs
are typically the largest portion of total carrying costs. Capital costs represent the cash that is

1See CBS (2022), which is titled “Target’s profit craters after it cut prices to clear inventory”, and Reuters (2022):
“U.S. retailers’ ballooning inventories set stage for deep discounts”.

2See https://safiosolutions.com/increasing-interest-rates-carrying-excess-inventory-can-have-an-even-greater-
effect-on-your-cash-flow/. Very similar points are made by Rackbeat (a provider of warehouse management
systems), in a post titled “How an Inventory System Helps You Counteract the Red Hot Interest Rate”
(https://rackbeat.com/en/how-an-inventory-system-helps-you-counteract-the-increased-interest-rates/).
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being tied up in the inventory. These costs include the money spent on the inventory, interest
paid on the purchase, and the opportunity cost of the money invested in the inventory rather than
other investments like mutual funds.” It is furthermore striking how many Western companies only
adopted “just-in-time” inventory management when interest rates started soaring in the early 1980s
(“post-Volcker”), even though the idea had been around for decades (Petersen 2002).

Next to goods markets, carrying costs may also be relevant in commodity markets – an
insight going back to (at least) Deaton & Laroque (1992, 1995, 1996). Frankel (2008a,b, 2014) , in
particular, makes the case that the rate of interest is an important driver of oil prices (with higher
interest rates providing greater incentives to economize on oil inventories, which raises available
supply, thus depressing the price). In line with this fact, Miranda-Pinto et al. (2023) document
how commodity prices tend to fall in response to a US monetary policy tightening – to a degree
that is increasing in the storability of the commodity. This supports the cost-of-carry channel, over
a parallel general equilibrium channel that operates by slowing down aggregate demand via more
conventional transmission channels (Miranda-Pinto et al. 2024).

In the empirical part of this paper (Section 6), we document that very similar forces seem
at play for housing inventories in the US housing market. There, we will show that monetary policy
has a stronger effect on the cost of housing when the housing inventory (the fraction of homes that
is unoccupied) stands at a higher level. Episodes during which many homes are vacant can be
thought of as environments in which landlords (or homeowners looking to sell their property) have
less market power. When combined with a higher interest rate (which is also the opportunity cost
of keeping the property unoccupied on one’s balance sheet), this gives landlords a greater incentive
to cut their price. They do so in order to speed up the process of getting the property occupied and
capitalize on the higher interest rate.

The fact that the cost-of-carry channel has been shown to matter to commodity prices as
well as to the cost of housing (in addition to anecdotal evidence, offered earlier in this introduction,
suggesting that it matters for storable goods), makes it of direct relevance to a major share of the
consumption basket in most countries.3 This makes the channel arguably worthy of more attention
than it has received up to this point. Indeed, it is not mentioned in standard treatments of the
monetary transmission mechanism (see, e.g., Boivin et al. (2010)).

In this paper, we analyze the cost-of-carry channel, focusing on how rising interest rates
incentivize firms to reduce inventory holdings. While prior studies have touched on this, our
contribution lies in examining how increased carrying costs affect prices, and we further innovate
by incorporating firm heterogeneity into the debate, arguing that this heterogeneity is a key factor
that endogenizes firms’ inventory decisions. Specifically, firms face distinct demand shocks, which
generate idiosyncratic variation in how inventories are accumulated over time.4

3 In the US, the shelter component accounts for over 30% of the CPI basket. For PCE, the housing-related share
stands at over 15% – lower, but still substantial. While the direct share of commodity prices is lower, they are an
important driver of price dynamics via their prevalence throughout the supply chain.

4The heterogeneous firm environment offers two main advantages. First, it allows us to study an economy with
a cross-sectional distribution of inventories, which can be used to better calibrate the model. Second, while the
total variance of the demand shock is currently exogenous, we plan to endogenize it in future work, so that variance
increases during recessions and decreases during booms. This would enable us to study the effects of uncertainty
shocks at the firm level more effectively.
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The essence of our argument is captured by a simple, static model, where we show that as
inventory carrying costs rise, firms are incentivized to lower their prices to economize on inventory
holdings. Firms with higher inventory levels when a shock occurs are more exposed to this dynamic
and thus have a stronger incentive to cut prices. To examine equilibrium considerations and
quantitatively assess the significance of the various forces involved, we then develop a tractable
model in which firms encounter two levels of demand shocks: high and low. Firms in a low-demand
period know they will face high demand in the next period, resulting in a finite distribution of
firms at equilibrium. This setup allows us to study how firms’ pricing decisions depend on their
inventory levels. At the start of each period, firms receive an idiosyncratic demand shock and
produce goods one period in advance.5 They carry over inventories by paying a carrying cost, and
their pricing decisions determine sales and the inventories held for the next period. Lastly, firms
choose production at the end of each period.

In equilibrium, high-demand firms indeed carry no inventory, while low-demand firms do.
The intuition is straightforward: firms in a low-demand period know they will face high demand in
the next period, so they carry inventories to meet that demand. This simplified equilibrium provides
analytical expressions for firms’ price decisions, especially those carrying inventories, and shows how
these decisions are influenced by monetary policy, which affects the cost of carrying inventories or
the firm’s pricing kernel.

The main lesson of the tractable model is that firms with inventories lower their prices when
carrying costs rise, boosting sales and reducing inventories for the next period, while firms without
inventories raise their prices. Aggregating these decisions shows that higher inventory levels make
aggregate prices more responsive to tighter monetary policy, highlighting the role of the cost-of-carry
channel. In other words, when inventory levels are high, an increase in carrying costs leads to a
larger price reduction.6

To validate this result, we test it within a quantitatively relevant environment where firms
face varying uninsurable idiosyncratic demand shocks, leading to a distribution of firms with different
inventory levels. We develop a model that accounts for this full distribution with firms differing in
their resources and demand risks, and facing costly price adjustments.7 Solving this model poses
challenges, as the distribution of resources represents a state variable of infinite dimension. Using
a state space representation, projection, and perturbation methods inspired by Reiter (2009), we
confirm that the findings from the tractable model hold.8

The model includes: monopolistically competitive wholesale firms, monopolistically
5These are idiosyncratic shocks, and the theory remains agnostic about their nature. We refer to them as demand

shocks for simplicity.
6In Section 3.4, we demonstrate that many of our main results hold in a model similar to Bils & Kahn (2000),

where inventories facilitate sales by allowing firms to draw from stock in response to unexpected demand. In this
complete markets environment, inventories are part of the technology, and there is no market failure. An advantage of
our framework is that inventories emerge as a firm-level distortion. While this paper is not normative, we characterize
the positive effects, leaving room for potential normative applications.

7In other words, we relax the assumption of having only two states of the world—high and low demand
shocks—which limited the number of firm types.

8While solving this in sequence space was an option, the state-space representation proves more efficient in this
context and enhances the comparison with the simpler model.
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competitive sectoral firms, a perfectly competitive retail firm, a representative household, and the
central bank. Wholesale firms use labor provided by households for production. The framework
is discrete and infinite in time, with firms producing goods one period ahead and incorporating
inventories to meet sectoral demand. The central bank is responsible for managing monetary policy.

To maintain consistency with the earlier tractable model, we assume that individual firms
(wholesale firms) set their prices based on their idiosyncratic shocks, while sectoral firms face nominal
frictions modeled as costly price adjustments. This framework, known as HANK, follows the seminal
work of Kaplan et al. (2018), and more specifically the treatment of heterogeneous firms in New
Keynesian environments, as in Ottonello & Winberry (2020). By introducing these additional layers
of heterogeneity and new channels, we enhance the analysis of monetary policy in this context.

The model examines how firms respond to two key shocks: an increase in inventory carrying
costs and a negative TFP shock. When the cost of carrying inventories rises, firms reduce their
inventory holdings to avoid higher expenses. This reduction in inventories leads firms to cut prices to
clear existing stock, shifting focus to real-time production, which raises labor demand and wages. A
negative TFP shock initially leads firms to hold more inventory as a buffer against lower production,
raising prices in the process. However, as production remains low and storage costs rise, firms
eventually deplete inventories and lower prices to stimulate sales.

In addition, the transmission channels of both shocks are influenced by the economy’s
endogenous inventory levels, which result from idiosyncratic firm demand shocks. By introducing
a shock to the variance of these firm-specific shocks, we can compare scenarios with high and low
inventory levels, as heightened firm risk increases inventories. Applying a contractionary monetary
policy shock at two points—when inventory levels are high and when they are low—the model
shows that higher inventories lead to a more pronounced price reduction following the monetary
policy shock.

The main findings from both the tractable and quantitative models are supported by our
empirical analysis of the U.S. housing market, where we show that higher housing inventories (the
fraction of unoccupied homes) lead to a greater reduction in prices following contractionary monetary
policy.

2 Related literature

The heterogeneous-firms models to analyze the inventory-channel of demand and supply shock is
related to three different literatures.

First, inventory dynamics have indeed a rich history in business cycle models, as inventories
are typically thought to account for a significant share of fluctuations in GDP (Blinder & Maccini
1991, Fitzgerald 1997, Ramey & West 1999). The idea central to this paper, that higher interest
rates give firms a greater incentive to economize on their inventory holdings, has been developed
before (see, e.g., Lieberman (1980), Irvine (1981), Blinder (1981), Akhtar (1983), Maccini et al.
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(2004)). While some of the aforementioned papers offered empirical support for this hypothesis,9
other papers (such as Ramey (1989)) have failed to do so, which has contributed to the theory’s
declining popularity over time.

Armed with recent progress in monetary policy shock identification, we revisit this debate.
When doing so, we deviate from the earlier literature along two dimensions. First, informed by our
model (presented in Sections 3 and 4) as well as aided by improved data availability, we broaden
our focus to also look at the response of prices. This contrasts with the aforementioned earlier
literature, which solely looked at outcomes in firms’ inventory holdings (which is challenging to
measure – especially at a high frequency, whereas analyzing outcomes at a lower frequency might
bias results). Our model, however, suggests that the price response should vary with inventory levels,
which is a hypothesis that is arguably easier to test than looking at observed changes in inventory
holdings.10 Second, we focus on one particular market, namely that for housing. That one, we argue
in Section 6, is more suited for testing our theory’s core hypothesis. When proceeding along these
lines, we find strong support for the cost-of-carry channel.11

This paper also relates to the study of heterogeneous firms within New Keynesian frameworks.
Some papers, such as Andrés & Burriel (2018), examine optimal monetary policy in this context,
designing policies that account for heterogeneity in total factor productivity and strategic price
interactions among firms. Adam & Weber (2019) demonstrate that incorporating heterogeneous
firms and systematic trends in firm-level productivity alters predictions for the optimal inflation rate.
Additionally, González et al. (2020) argue that central banks should implement monetary expansion
following a TFP shock to alleviate constraints on firms. Other studies focus on the significance of
firm dynamics within heterogeneous firm models to understand aggregate fluctuations and the effects
of macroeconomic policies, as seen in Hopenhayn (1992), Hopenhayn & Rogerson (1993), Erosa &
González (2019), Bartelsman et al. (2013), Clementi & Palazzo (2016), and Sedlácek & Sterk (2019).
Furthermore, this paper contributes to the literature that emphasizes the importance of accounting
for firm heterogeneity in business cycle models, as developed by Melitz (2003), Ghironi & Melits
(2005), and Bilbiie et al. (2012). We contribute to this literature by showing that inventories are
a critical driver of inflation dynamics and must be considered in discussions of optimal monetary
policy. Specifically, our findings suggest that after a negative TFP shock, inflation dynamics will

9Additional support is presented in papers focusing on the credit channel of monetary policy. Gertler & Gilchrist
(1994) find that especially smaller firms’ inventory holdings are sensitive to borrowing costs, while Kashyap et al.
(1993) and Kashyap et al. (1994) make the same point for firms that are bank-dependent.

10With respect to the level of inventory holdings, the theory predicts that higher interest rates should lower
inventories (as maintaining them becomes costlier). However, when all firms attempt to shed their inventories by
cutting prices (leaving their relative prices unchanged), inventory holdings might show relatively little movement in
aggregate. Especially when the intertemporal substitution elasticity on the consumer side is low and/or when they
become less willing to hold inventories too as interest rates rise. In this example, one would still see the cost-of-carry
channel operate on prices though, which motivates our focus. Junayed & Khan (2009) also argue that analysis of
inventory dynamics is problematic when trying to test the cost-of-carry channel, further strengthening the case of our
focus on price responses.

11At the same time, we realize that our findings are, strictly speaking, “local” to the housing market. We therefore
remain open to the possibility that the cost-of-carry channel has little-to-no significance for the goods market (which
has been the focus of most earlier studies). However, given the importance of housing services in price indices
(recall footnote 3), we see our results for the housing market as interesting in their own right. On top of that, Frankel
(2008a,b, 2014) and Miranda-Pinto et al. (2023, 2024) have documented empirical support for the cost-of-carry channel
in commodity markets – with resulting commodity prices being an important driver of CPI inflation as well.
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depend on inventory levels, and thus the optimal monetary policy approach should take this into
account.

Finally, and more broadly, the wider inventory literature has mostly evolved around three
stylized facts:

1. Production is more volatile than sales;

2. Inventories are procyclical;

3. The ratio of inventories-to-sales is countercyclical (implying that sales display stronger
procyclicality than inventories).

While an early literature treated inventories as a way to smooth production over the cycle, this
approach has fallen out of favor as it is inconsistent with stylized fact #1 (Blinder 1986, Eichenbaum
1989). Instead, scholars have tried to reconcile (some of) the above stylized facts by modeling
inventories as a factor that avoids stock-outs, thereby boosting sales (Kahn 1987, Bils & Kahn
2000), whereas others have approached the issue by focusing on non-convex production costs (leading
to “production bunching”; Ramey (1991)) or by taking an (S,s)-type approach (Khan & Thomas
2007). Den Haan & Sun (2024) augment a standard New Keynesian model with a “sell friction”,
which enables their model to replicate key stylized facts whilst also highlighting the importance of
inventories for business cycle fluctuations. Of note, their model also offers a fully microfounded
environment in which the cost-of-carry channel arises.

Relative to this last literature, our objective is more focused. We wish to understand the role
of inventories in the transmission of aggregate shocks. To do so, we first present our simple theoretical
model in Section 3 to gain intuition and ensure tractability of the overall effects. In Section 4, we
extend the model to a quantitative framework, suitable for analyzing general equilibrium effects
across the entire economy. Section 5 discusses the main findings of the quantitative model and
examines the overall equilibrium effects. Section 6 offers an empirical test of its key prediction on
the US housing market. Finally, Section 7 concludes the paper.

3 The Simple Model

The core of our argument can be captured by a very simple model, which is essentially static in
nature. Consider a profit-maximizing firm that controls its production level (y), the price it charges
(p), and the level of inventories it chooses to maintain (x). Both production and inventories incur
quadratic costs, specifically a production cost and a carrying cost, respectively, and goods produced
will only be available for sale in the future (not explicitly modeled here but addressed in further

7



detail below). The firm’s problem can be represented as:

max
p,y

pS(p) − ψy
y

2
2

− ψx
x

2
2

+ ϑq, (1)

s.t. x = x0 − S(p),
q = x+ y,

x ≥ 0,

where S(p) is the demand function, assumed to be continuous, three-times differentiable, and with
S ′(p) < 0. The cost of producing y units is given by ψy

y2

2 , and the cost of carrying x units in
inventory by ψx x

2

2 . The final term in the objective function, +ϑq, serves as a shorthand to represent
the positive value of carrying goods over into the future, where ϑ > 0, and q, the sum of end-of-
period inventories and production, represents the number of goods available for sale in the future.
The firm begins with x0 units in inventory, carried over from the unmodelled past, meaning that it
will have x = x0 − S(p) units left in inventory after selling S(p) units. When setting its price p,
the firm considers the relationship between the price it charges, the quantity of goods it will sell,
and, consequently, the amount of inventory it will need to carry forward (subject to a quadratic cost
governed by ψx).

Solving the problem described by (1) leads a profit-maximizing firm to set its optimal
production and price as follows:

y = ϑ

ψy
, (2)

0 = [p+ ψx(x0 − S(p)) − ϑ]S ′(p) + S(p). (3)

The production component of the model (2) is intentionally simplified, allowing us to focus on price
setting as governed by the implicit function in (3). In particular, we are interested in understanding
how a firm’s “exposure” to inventory carrying costs—reflected in its initial inventory level, x0 (carried
over from the past)—influences its pricing strategy when faced with changes in inventory carrying
costs, ψx.

Proposition 1. (Price setting) As the cost of carrying inventories rises, profit-maximizing
behavior induces the firm to lower its price, i.e.:

∂p

∂ψx
< 0,

more so the greater its pre-existing inventory level x0.

The proof is in Appendix A. Proposition 1 conveys the logic, frequently alluded to by many
firms (recall, for example, the quotes featured in the Introduction), that as the costs of carrying
inventories rise, firms gain an incentive to lower their prices in an attempt to economize on their
inventory holdings. Firms carrying more inventory when the shock hits (i.e., firms with higher x0)
are more exposed to this channel and thus have the strongest incentive to cut their prices.

The model environment presented so far is highly simplified, static, and partial in
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nature—serving purely to illustrate the main mechanism at play. In what follows, we will develop
a full quantitative model—centering on the dynamic version of the problem described by (1)—to
explore the impact of equilibrium considerations and quantitatively assess the importance of the
various forces involved. In particular, we aim to explain why firms carry inventories and how their
pricing decisions vary based on their inventory levels.

Given that interest rates are a crucial determinant of inventory carrying costs, it is essential to
incorporate an explicit role for monetary policy in this context. Section 4 will address this, drawing
further implications for the monetary transmission mechanism, which will help us understand how
these factors interact within the economy.

To achieve this, we now consider an economy where a final good, St, is produced by a unique
profit-maximizing representative firm. This firm combines intermediate goods, Si,t, produced by
different firms indexed by i ∈ [0, 1], using a standard Dixit-Stiglitz aggregator with an elasticity of
substitution denoted by γ:

St =
(� 1

0
ε

1
γ

i,tS
γ−1

γ

i,t di

) γ
γ−1

, (4)

where εi,t is an idiosyncratic shock affecting the sales of individual firm i, which can be interpreted
as a demand shock for firm i’s variety.12 For any intermediate good i ∈ [0, 1], production Si,t is
carried out by a monopolistic firm and sold at price pi,t.

Profit maximization by the firm producing the final good implies:

Si,t = 1
pγi,t

εi,tP
γ
t St. (5)

Finally, the price index is defined as:

Pt =
(� 1

0
p1−γ
i,t εi,t di

) 1
1−γ

. (6)

Now, we focus on the problem of individual firms in a partial equilibrium analysis. First,
observe that we can rewrite equation (5) for a specific firm i, omitting the subscript i, in the following
form:

St(pt) = S̄(pt)εt. (7)

Here, εt represents the demand shock in period t, and S̄(pt) denotes the firm’s demand as
a function of its price pt, with S ′(pt) < 0 indicating that demand decreases as the price increases.
Finally, total sales are given by St(pt).

The timeline of the model, outlining the decisions made by individual firms, is as follows:

1. Production takes one period.
12These idiosyncratic shocks can be associated with demand shocks, though the theory is agnostic about their

nature, which could also be interpreted as productivity shocks.
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2. At the start of period t, the firm is impacted by a demand shock, which affects the quantity
of goods sold, St(pt).

3. To meet the demand St(pt), the firm relies on the previous period’s production, yt−1, and the
total inventory available at the beginning of period t, denoted by xt. Thus, the total quantity
of goods available for sale at the start of period t is:

qt = yt−1 + xt. (8)

4. After the demand shock is realized, the firm sets the selling price for its goods and chooses the
amount of inventory to hold. The inventory available in the next period is:

xt+1 = qt − St(pt). (9)

5. A holding cost of inventories, denoted by ψx, is incurred.

6. At the end of period t, the firm decides on the quantity to be produced, denoted as yt.

The timeline of the model can be summarized as follows:

t − 1

St−1(pt−1) yt−1

t

St(pt) yt

t + 1

St+1(pt+1) yt+1

qt = yt−1 + xt

Therefore, the firm’s problem in nominal terms at period t can be stated as:

V (qt) = max
{pt,yt}

ptSt(pt) − ψy
y2
t

2 − ψx
x2
t+1
2 + βE [V (qt+1)] , (10)

subject to:
qt+1 = qt − St(pt) + yt, (11)
xt+1 = qt − St(pt) ≥ 0, (12)

where ψy y
2
t

2 is the production cost of yt. We impose that holding inventories incurs a cost, where the
total cost is given by ψx

x2
t+1
2 . The operator E is taken with respect to the demand shock. Equation

(11) represents the law of motion for the quantity available in period t+ 1. Finally equation (12) is
the inventory constraint, assumed to be positive.

In recursive formulation the problem above can be written as:

V (q) = max
{p,y}

pS(p) − ψy
y2

2 − ψx
(q − S(p))2

2 + βE [V (q′)] , (13)

subject to:
q′ = q − S(p) + y, (14)
x′ = q − S(p) ≥ 0. (15)
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For the sake of simplicity, we make the following assumption regarding monetary policy in
this Section.13

Assumption A. Monetary policy affects either ψx or β, where β = 1
RN is the firm’s pricing kernel,

and RN is the nominal interest rate.

This assumption implies that if we let ψx be an increasing function of the interest rate, then
higher values of ψx will reduce the incentive to hold inventories. Consequently, the firm may choose
to lower prices to increase the quantity of goods sold in the current period, t, thereby reducing
the amount of inventory carried into the next period. A similar rationale applies when considering
a reduction in β due to an increase in the interest rate. In what follows, we introduce a simple
structure for the demand shocks affecting this economy, which will further clarify these results

Let µ denote the Lagrange multiplier associated with the inventory constraint defined by
equation (15). The solution to the firm’s problem is obtained by solving the system represented by
equations (16) through (19).14

S(p) + pS ′(p)
S ′(p) + ψx(q − S(p)) = ψyy + µ, (16)

ψyy = βE [−ψx(q′ − S(p′)) + ψyy
′ + µ′] , (17)

q′ = q − S(p) + y, (18)
µ(q − S(p)) = 0. (19)

3.1 Reduced Heterogeneity Equilibrium

We aim to establish an equilibrium framework that generates a distribution of inventories based
on the history of idiosyncratic shocks. For now, we would like to simplify this structure to better
understand the mechanisms underlying individual firms’ decisions, enabling us to aggregate these
firms to derive the industry equilibrium.

To achieve this goal, consider an economy with a straightforward shock structure. We will
assume there are two types of shocks: a High-Demand shock (H) and a Low-Demand shock (L),
denoted as:

ε =

1 + ∆ if shock = H,

1 − ∆ if shock = L.

This structure allows us to analyze how these demand shocks influence individual firm
decisions and the overall industry equilibrium.

In the scenario of a High-Demand shock (H), there’s a probability of α for the economy to
remain in the H state, with the remaining probability (1 − α) indicating a transition to the Low-
Demand state (L). Conversely, when the economy is in the L state, the probability of transitioning

13We override this assumption in Section 4 to incorporate an explicit role for monetary policy in this context.
14In Appendix B.1, we derive the results stated by these equations.
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to the H state is 1, while the probability of staying in the L state is 0.15 We summarize these
transition probabilities in the following transition matrix:

Π =
[
π(H|H) π(L|H)
π(H|L) π(L|L)

]
=
[
α 1 − α
1 0

]
. (20)

Considering this reduced heterogeneity equilibrium structure, we employ a guess-and-verify
approach to find an equilibrium where High-Demand firms do not hold inventories, while Low-
Demand firms do. In this equilibrium, three types of firms will emerge, as discussed below.

Using the notation xIJ = x(I|J), where xIJ denotes the realization of variable x in state
I given the state J , Proposition 2 summarizes the equilibrium conditions in this model. In this
equilibrium, the prices will behave as stated in Proposition 2.

Proposition 2. (Equilibrium conditions) In the case of a High-Demand shock, the firm sets
prices such that it does not hold inventories, i.e., S(pH) ≥ qH . Thus, the firm ensures:

S(pHH) = qHH and S(pHL) = qHL.

Regardless of the previous state (High or Low demand), there exists a price at which the available
quantity can satisfy the demand, ensuring market equilibrium under these conditions. Specifically,
the equilibrium conditions are given by:

pHH = S−1 (qHH) , (21)
pHL = S−1 (qHL) , (22)
S(pLH)
S ′(pLH)(1 + ES

pLH
) + ψx(qLH − S(pLH)) = ψyyLH , (23)

(ψy + βψx + βψy)yLH = β
S(pLH)
S ′(pLH)(1 + ES

pLH
) + β

S(pHL)
S ′(pHL)(1 + ES

pHL
) + βψxqHL, (24)

(ψy + βψx)yHL = βψx(αS(pHH) + (1 − α)S(pLH)) + βψy(αyHH + (1 − α)yLH) + βαµHH , (25)
(ψy + βψx)yHH = βψx(αS(pHH) + (1 − α)S(pLH)) + βψy(αyHH + (1 − α)yLH) + βαµHH , (26)

µHH = S(pHH)
S ′(pHH)(1 + ES

pHH
) − ψyyHH , (27)

µHL = S(pHL)
S ′(pHL)(1 + ES

pHL
) − ψyyHL. (28)

Proposition 3. (Existence of Equilibrium) Given the conditions outlined in Proposition 2, an
15This simple structure will allow us to obtain equilibrium conditions that will depend only on the histories

(HH,HL,LH).
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equilibrium exists as long as the following conditions are satisfied:

S(pHH)
S ′(pHH)(1 + ES

pHH
) > ψyyHH ,

S(pHL)
S ′(pHL)(1 + ES

pHL
) > ψyyHL,

qLH > 0.

The first two conditions imply that firms in the High-Demand state do not hold inventories, while
the third condition, qLH > 0, ensures that firms in the Low-Demand state carry inventories.

The proof is provided in Appendix B.2. It is important to note that the equilibrium conditions
hold as long as the demand function S̄ admits an inverse. When the current state is Low-Demand
(L), equation (23) implies that µLH = 0, meaning firms will carry positive levels of inventories in
this state.

From equations (27) and (28), we observe that firms do not hold inventories during High-
Demand shocks as long as the corresponding Lagrange multipliers are positive, as stated in
Proposition 3. Therefore, in this simplified structure, firms stockpile inventories in anticipation
of future High-Demand shocks when they are in a Low-Demand state. This inventory accumulation
allows them to meet the expected future demand.

In this model, the rationale for firms holding inventories is primarily driven by demand
shocks.

Result 1. Assume the demand function is given by:

S̄(p) = 1
pγ
,

where γ is the demand elasticity and η =
(
γ−1
γ

)
is the market power. In the steady state, there are

three types of firms producing total quantities qHH , qLH , and qHL, and their decisions to produce
quantities yH and yL depend only on the current level of demand. In such an equilibrium, the values
of yH and yL are determined by:

ψyyH = β(1 − α)yL(ψx + ψy) − βψx(1 − α)
(
βη

ψyyL

)γ
(1 + ∆) + βαη

(
1 + ∆
yH

) 1
γ

, (29)

(ψx + ψy)yL =
(

(1 − ∆)(ψyyL)γ
(ψyyL)γ(yL + yH) − (βη)γ(1 + ∆)

) 1
γ

η + ψx

(
βη

ψyyL

)γ
(1 + ∆). (30)
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The corresponding prices for the different firm types are given by:

pHH =
(

1 + ∆
yH

) 1
γ

, (31)

pHL =
(

1 + ∆
yL + yH − p−γ

LH(1 − ∆)

) 1
γ

, (32)

pLH =
(

(1 − ∆)(ψyyL)γ
(ψyyL)γ(yL + yH) − (βη)γ(1 + ∆)

) 1
γ

. (33)

Finally, the total quantities produced by the different firm types are given by:

qHH = yH , (34)
qLH = yH , (35)

qHL = yH + yL − 1
pγLH

(1 − ∆). (36)

The proof is provided in Appendix B.3.

Note that when γ = 1, implying η = 0, we encounter conditions such as yL = yH = 0.
However, in this scenario, the prices become indeterminate. Consequently, such a situation cannot
represent an equilibrium and we need to impose γ > 1.

Result 2. Let yH and yL be functions of ψx, and let pLH be defined by

pLH =
(

(1 − ∆)(ψyyL)γ
(ψyyL)γ(yL + yH) − (βη)γ(1 + ∆)

) 1
γ

.

Then, around the steady-state values yH,0 and yL,0 of yH and yL respectively, pLH is decreasing with
respect to ψx if the sum of the derivatives of yL and yH with respect to ψx is positive.

The proof is detailed in Appendix B.4. This model demonstrates a distinctive characteristic:
due to its structure, when firms are in a low-demand state and experience a demand shock, they
anticipate transitioning to a high-demand state in the future. Consequently, if the cost of holding
inventories increases, firms will reduce their current inventory levels. To compensate and prepare
for future demand, firms in the low-demand state will increase their production. If this increase in
production exceeds the reduction in the high-demand state, the result stated above follows. This
behavior becomes more apparent when analyzing the model’s dynamics.

3.2 Equilibrium conditions

To further illustrate the results discussed above, we present a numerical example demonstrating the
existence of this equilibrium. For this purpose, we refer to the parameters outlined in Table 1:

Figures 1, 2, 3, and 4 show the equilibrium conditions for different values ψx.
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Parameter Description Value

ψx Cost to carry inventories 0.5
ψy Cost to produce 0.7
α Probability to continue in High-Demand 0.3
β Discount factor 0.95
∆ Demand shock 0.2
γ Elasticity of demand with respect to price 2.0
η Market power 0.5

Table 1: Model Parameters.

(a) Production in the Low-Demand state (L). (b) Production in the High-Demand state (H).

Figure 1: Production for different values of ψx.

(a) The price in L, considering
the previous state was H.

(b) The price in H, considering
the previous state was H.

(c) The price in H, considering
the previous state was L.

Figure 2: Prices for different values of ψx.
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Figure 3: Inventories across various states and different values of ψx.

(a) The quantity in L,
considering the previous
state was H.

(b) The quantity in H,
considering the previous
state was H.

(c) The quantity in H,
considering the previous
state was L.

Figure 4: Quantities for different values of ψx.

Observe that during periods of low demand, the firm must carry over some of the available
goods as inventory into the next period. Given the associated costs, higher inventory expenses lead
to lower prices for the firm’s products, as illustrated in Panel (a) of Figure 2. This pricing strategy
is adopted because, in such scenarios, a lower price results in an increase in sales volume, thereby
reducing the quantity of goods that need to be carried over.

In contrast, firms in the high-demand state raise their prices. This increase is a response
to higher holding costs and reduced production. The scarcity of the product, due to decreased
production, justifies the higher price, which is passed on to consumers, as shown in Panels (b) and
(c) of Figure 2.

It is important to note that adopting β = 1
RN demonstrates the same logic. Specifically, it

shows that an increase in the interest rate leads to a reduction in the price charged by the firm
in a low-demand state, as the cost-effectiveness of carrying inventories into the future diminishes.
Therefore, whether considering inventory carrying costs or the variable β, we observe similar pricing
strategic behavior from the firm.

Notice that as ψx increases, there is a significant shift in production strategies. Specifically,
production in the low-demand state (yL) increases, while production in the high-demand state (yH)
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decreases. This shift reflects firms’ adjustments in response to anticipated future demand.

An increase in ψx leads to higher inventory holding costs. In response, firms increase
production in the low-demand state as a precautionary measure. This strategy involves producing
more to build up inventory in anticipation of future high demand. By doing so, firms aim to
mitigate the increased costs associated with holding stock, as illustrated in Panel (a) of Figure 1.
16 Moreover, the reduction in prices leads to an increase in sales, which corroborates the need for
increased production.

Conversely, production in the high-demand state decreases. This reduction occurs because
firms raise their prices, leading to decreased sales, which justifies a lower production level, as seen
in Panel (b) of Figure 1.

The firm only carries inventories when demand is low, according to the equilibrium conditions
we highlighted in Proposition 2. The quantity of inventories carried is given by:

x′ =


0 if state = HH,

0 if state = HL,(
βη
ψyyL

)γ
(1 + ∆) − yL if state = LH.

It is evident that higher costs associated with maintaining inventories result in a lower
quantity of inventories, as shown in Figure 3. Similarly, this principle applies to the variable β: as
the interest rate increases, the value derived from holding inventories decreases.

In Appendix C, we present equilibrium conditions for different values of ψy. The results
indicate that increased production costs lead to a reduction in production in both states, an increase
in prices to offset the higher costs, and a decrease in inventories and the total quantity held, as
expected. Appendix D presents equilibrium conditions for lower values of γ. As anticipated, the
higher γ, the greater the absolute value of the price elasticity of demand, meaning that demand
becomes more elastic; thus, small changes in price result in significant changes in quantity demanded.
Conversely, a lower γ signifies that consumers are less responsive to price changes, which grants
firms more pricing power. Consequently, with a lower γ, prices tend to be higher for the same set
of parameters. In such cases, firms exercise more power, leading to lower production levels and, as
a result, lower quantities held. Thus, as illustrated in Figures in Appendix D, a lower γ allows the
monopolist to set higher prices due to increased market power.

As a final note, observe that this model setup can generate state-dependent, real effects
of monetary policy, even when prices are fully flexible. It demonstrates that incentives to carry
inventories are influenced by the ex-ante real interest rate. Specifically, when expected inflation is
high (which corresponds to a lower ex-ante real rate), there is a stronger incentive to accumulate
inventories. High expected inflation effectively provides a return for producing now and holding onto
the goods.

One way to accumulate inventories is to raise prices. This strategy can bring expected
inflation into the present, even without price stickiness. In other words, the presence of inventories

16This will become clearer once we analyze the dynamics of this economy.
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can make price setters forward-looking, as they anticipate future conditions and adjust their pricing
strategies accordingly.

3.3 Dynamics of the partial equilibrium

Parameter Description Value

ψx Cost to carry inventories 0.5
ψy Cost to produce 0.7
α Probability to continue in High-Demand 0.8
β Discount factor 0.95
∆ Demand shock 0.5
γ Elasticity of demand with respect to price 2.0
η Market power 0.5

Table 2: Model Parameters.

We now present the dynamic responses of each type of firm to a monetary policy shock
affecting ψx, using the calibration parameters provided in Table 2. To facilitate comparison and
highlight the differences between business cycles across scenarios, we maintain the same shock
magnitude in both cases. Figure 5 shows the Impulse Response Functions (IRFs) for a persistent
increase in ψx, demonstrating its impact on production, prices, inventories, and quantities across
different states.17

Figure 5: Comparison of Impulse Response Functions for selected variables following a positive shock
in ψx.

17In Appendix E.1, we provide detailed results for each case individually.
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Notice that each panel reports the proportional change for the variable under consideration,
in percentage points. For instance, Panel 1 reports a persistent increase in ψx for 100 periods, after
an increase of 1 % on impact, except for the inventories, for which we compute the absolute variation.

We observe that when ψx increases, the firm’s production behavior varies depending on
whether it is in a low- or high-demand state. In the low-demand state (yL), production rises as
firms anticipate future high demand (Panel 2 of Figure 5). This precautionary increase is driven by
the expectation of transitioning to a high-demand state. Firms produce more during low demand
to mitigate future inventory costs. Additionally, as shown in Panel 4 of Figure 5, when inventory
costs increase, firms lower prices to reduce excess inventory, boosting sales and creating incentives
to produce more.

In contrast, in the high-demand state (yH), production decreases (Panel 3 of Figure 5).
Firms rely on the inventory accumulated during the low-demand phase, allowing them to reduce
production and avoid the costs of meeting demand with fresh output.

Pricing strategies also adjust following a positive shock to ψx. In the low-demand state,
firms lower prices to cut inventory holding costs, quickly selling off excess stock. Conversely, in the
high-demand state, firms raise prices due to higher holding costs and reduced production, which
increases scarcity and justifies the price hike.

In essence, as ψx increases, the firm’s cost structure changes, prompting adjustments in
production and inventory strategies. This mirrors earlier observations: during low demand, firms
must carry over inventory, and higher costs lead to lower prices to increase sales. In high demand,
firms raise prices to compensate for higher holding costs and reduced production.

This logic also applies to changes in β = 1
RN , as shown in Appendix E.2. When the interest

rate rises, the cost-effectiveness of holding inventories decreases, leading to similar outcomes: lower
prices during periods of low demand and higher prices during high demand, with more pronounced
effects. However, one notable difference is that production in the low-demand state will also decline.

Second-order moments of this economy are presented in Appendix E.3, which confirm that
economic volatility increases under a preference shock. However, apart from production, the effects
remain largely similar.

3.4 Discussion

It is crucial to highlight that introducing demand shocks helps endogenize firms’ decisions to carry
inventories, providing a rationale for their inventory choices. The primary focus here is to illustrate
that in an environment with inventories, an increase in inventory carrying costs leads firms to reduce
prices to manage their stockpile.

Our discussion aims to justify why firms carry inventories from an endogenous perspective.
For comparison, consider a model similar to Bils & Kahn (2000), where inventories facilitate sales by
allowing firms to draw down stock in response to unexpected demand, avoiding additional production
costs.

19



In this alternative model, we define the demand function as:

St(pt, xt) = S̄(pt)xξt , (37)

where, unlike the previous specification, holding inventories now boosts total demand. The model’s
timeline and structure remain consistent. Here, a firm’s sales increase with higher relative inventory
holdings and decrease with higher relative prices. This environment can also be seen as treating
inventories as a taste shifter, where firms use them to capture additional demand, similar to Kryvtsov
& Midrigan (2010).

In Appendix F, we present the model and demonstrate that our main results hold,
particularly that an increase in inventory carrying costs leads to reduced prices. Our baseline model
offers the advantage of allowing firms to make inventory decisions based on idiosyncratic shocks,
whereas this specification involves a representative firm using inventories to boost demand. Here
inventories facilitate sales by allowing firms to draw from stock in response to unexpected demand.

The results are consistent, with the added benefit of directly observing that increased
inventory carrying costs lead to lower prices in a representative firm setting. In this complete
markets environment, inventories are part of the technology, and there is no market failure. An
advantage of our framework is that inventories emerge as a firm-level distortion. While this paper is
not normative, we characterize the positive effects, leaving room for potential normative applications.

Appendix G also explores a combined model where demand is given by:

St(pt, xt) = S̄(pt)xξtεt, (38)

with shocks structured as follows:

ε =

1 + ∆ if shock = H,

1 − ∆ if shock = L.

In this combined environment, similar to the previous models, firms in a low-demand state
will produce more than those in a high-demand state. However, production levels will show a U-
shaped pattern across different values of ψx. This reflects how the relationship between inventory
holding costs (ψx) and production levels (yL and yH) depends on firms’ inventory management and
production planning in response to carrying costs.

When ψx is low, holding inventory is inexpensive, so firms maintain larger inventories,
allowing steady production with fewer adjustments. Higher prices and lower demand lead to reduced
production and reliance on inventory.

When ψx is high, holding costs are significant, prompting firms to minimize inventory by
reducing prices, which increases demand and necessitates higher production to meet that demand
directly. This scenario highlights the stronger influence of inventory levels on pricing and production
responses.18

18See Figure 39 in Appendix G.
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3.5 Industry dynamics

Given the same shock structure as previously discussed in equation (20) in Section 3.1, we know the
steady-state numbers of each type of firm are:

nHH = α
( 1

2 − α

)
, nHL = (1 − α)

( 1
2 − α

)
, nLH =

(1 − α

2 − α

)
. (39)

Using this information, along with Equation (4), which represents the final good in this
model with reduced heterogeneity, we obtain in equilibrium:

S =
(
nHHε

1
γ

HHS
γ−1

γ

HH + nHLε
1
γ

HLS
γ−1

γ

HL + nLHε
1
γ

LHS
γ−1

γ

LH

) γ
γ−1

. (40)

Assume there is a representative consumer who provides labor to firms. Under the same
framework as the Simple Model, we set the wage w = ψy

2 . The consumer provides labor services to
firms and consumes the aggregate profits of individual firms. Total consumption in the steady state
is:

C = S − ψx
2
(
nHHx

2
HH + nHLx

2
HL + nLHx

2
LH

)
. (41)

Using the results from Proposition 2 and setting the price of the final good as the numeraire
(P = 1), the equilibrium conditions follow directly. According to our specification of shocks, a
higher ∆ leads to higher total inventories in the economy. Next, we examine the system’s dynamics
following a monetary policy shock that affects ψx, using the same parameters as in Table 2, except
for ∆, where we compare two cases: one with a higher ∆ = 0.5, representing a higher aggregate level
of inventories, and one with a lower ∆ = 0.1, representing a lower level of aggregate inventories.

Figure 6 illustrates the impulse response functions for a persistent increase in ψx on prices,
consumption, inventories, quantity, and GDP. Each panel in Figure 6 shows the proportional change
in percentage points for the corresponding variable. For example, Panel 1 reports a persistent
increase in ψx over 100 periods, after an increase of 1% on impact.
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Figure 6: Comparison of Impulse Response Functions for selected variables following a positive shock
in ψx, with two different inventory levels: Higher and Lower.

Notice in Figure 6 that the higher the level of inventories, for the same type of shock,
the greater the reduction in prices. For the lower inventories case, we consider a scenario where
the total inventories level is close to zero, which demonstrates that in this situation, the effect on
aggregate prices is minimal. This highlights the crucial role of inventories and their carrying cost as
a transmission mechanism to prices after shocks.

Table 3 summarizes the first and second moments of the key variables for each case analyzed.
For each variable, we report the steady-state value, labeled as “Mean,” and the normalized standard
deviation in percentage terms, which is the standard deviation divided by the mean, referred to as
“Std.”

22



Low Inv. High Inv.

P Mean 1.000 1.000
Std 0.007 0.061

C Mean 0.700 0.753
Std 0.007 0.060

X Mean 0.005 0.064
Std 0.042 0.140

Q Mean 0.705 0.820
Std 0.015 0.122

GDP Mean 0.700 0.756
Std 0.015 0.121

Correlations
corr(X,P ) 0.6277 0.9484
corr(X,X−1) 0.9057 0.9524
corr(GDP ,GDP−1) 0.9961 0.9782

Table 3: First and second moments for key variables under different inventory levels: Low and High.

4 Quantitative assesment

We now solve for the evolution of inventories and prices over the business cycle in a quantitatively
relevant environment. In the first part of the paper, we made some assumptions regarding demand
shocks, allowing us to study price behavior after monetary policy shocks that affect the cost of
carrying inventories in a simple environment. In this section, we relax some assumptions, particularly
the assumption that there are only two states of the world (H and L), which previously resulted
in an economy with a limited number of firm types. We also introduce endogenous labor in the
production function and a representative household. By incorporating a more complex structure for
idiosyncratic demand shocks for firms, we generate a time-varying joint distribution of inventories
and price decisions.

Previously, we observed that contractions in monetary policy, indicated by an increase in
inventory carrying costs, led to a reduction in the total quantity of inventories, primarily achieved
through price reductions. The objective of this quantitative assessment is to determine whether this
result holds true when analyzed within a general equilibrium model.

4.1 Model

This model is a quantitative generalization of the one presented previously. In this framework, due
to demand shocks, firms will have persistent differences in their inventory levels and, consequently,
different pricing decisions. These differences will lead to varied reactions to monetary policy changes.
All firms draw demand shocks from the same distribution. There are five types of agents in this
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economy: a continuum of monopolistically competitive firms (wholesale firms), a continuum of
monopolistically sectoral firms, a representative perfectly competitive firm (retail firm) that buys
the production of the sectoral firms, a representative household, and the central bank. Unlike the
previous model, individual wholesale firms use labor for the production of the good y, which is
supplied by the households. As before, the production to be used in period t will be produced at
the end of period t − 1, and together with the inventory levels, it composes the quantity of goods
qt, which can then be used to meet the demand of the sectoral firm. Time is discrete and infinite.
Each period, there is a fixed mass of heterogeneous firms distributed on an interval I, and a fixed
mass of sectoral firms distributed on an interval J . Households provide labor services to the firms,
and the central bank implements monetary policy.

4.1.1 Risk structure

Below we discuss the risk strucuture of the model.

Idiosyncratic demand shock. The risk structure is the same as in the previous section.
Specifically, we assume that idiosyncratic demand shocks follow an AR(1) process, such that the
idiosyncratic level of demand for the product of firm i at time t is given by εi,t = ρεεi,t−1 + uεi,t,
where ρε represents the persistence of the idiosyncratic demand shock and uεi,t ∼IID N (0, σ2

ε). Each
idiosyncratic demand shock εi,t can take E distinct values in the set E ⊂ R+.

Technology and TFP shock. In this section, we also assume an aggregate productivity risk,
which is modeled as an AR(1) process zt = ρzzt−1 +uzt , with ρz being the persistence parameter and
uzt ∼IID N (0, σ2

z). The aggregate productivity, denoted Zt, is related to zt through the following
functional form: Zt = Z0e

zt .

4.1.2 Firms

The production side of the economy consists of a continuum of monopolistically competitive firms,
indexed by i, distributed over an interval I. These firms sell their goods to another monopolistically
competitive firm, indexed by j, which operates under similar market conditions and is distributed
over an interval J . The goods sold by the firms in sector i are aggregated by a sectoral firm using an
aggregator with an elasticity of substitution between different products, denoted by γ. This sectoral
firm then sells the aggregated goods to a retail firm, which further aggregates them into a final good,
St, using another aggregator with an elasticity of substitution between different sectors, denoted by
γj.

Wholesale firms. The model follows the timing and structure discussed in the Simple Model in
Section 3, where each firm i in the wholesale sector operates under a monopolistically competitive
structure. We assume each firm’s production decisions for period t are made in period t − 1. At
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the start of period t, each firm i is impacted by a demand shock εi,t, which affects the demand for
goods sold by the firm according to the following equation:

Si,t = 1
pγi,t

εi,tP
γ
j,tSj,t, (42)

where Pj,t is the price charged by the sectoral firm j, and Sj,t is the Dixit-Stiglitz aggregator of
differentiated products (i.e., the production of the sectoral firm j). To meet this demand, firm i

depends on the production level yi,t−1 and the total inventory available at time t, denoted by xi,t.
Given this, the total quantity of goods available to be sold at the beginning of period t is:

qi,t = yi,t−1 + xi,t. (43)

As before, at the end of period t, the firm determines the quantity to be produced, denoted as yi,t.
After the demand shock is realized and the firm sets the selling price for its goods, we can calculate
the inventories available in the next period as:

xi,t+1 = qi,t − Si,t. (44)

The timeline of the model for each firm i can be summarized as follows:

t − 1

Si,t−1 yi,t−1

t

Si,t yi,t

t + 1

Si,t+1 yi,t+1

qi,t = yi,t−1 + xi,t

Production. Different from the simple model, we now introduce labor into the production
function. Additionally, we allow an aggregate productivity shock to enter the production function.
Each firm i produces the same good yi,t using labor li,t with the following production function, for
t ≥ 0:

yi,t = Ztl
α
i,t, (45)

where Zt is the economy-wide level of productivity and α ∈ (0, 1) is the labor share.

Firm Heterogeneity. Given the whole discussion above, it is evident that at the beginning of
each period, a firm is characterized by its predetermined quantity q and the current demand shock
ε. Therefore, the aggregate state of the economy is defined by the distribution of firms (q, ε) and by
the aggregate shock Z.

We can summarize the distribution of firms over (q, ε) using the probability measure Λ, which
is defined on the Borel algebra generated by open subsets of the product space Q×E. The evolution
of this distribution over time is governed by a mapping Γ, such that:

Λ′ = Γ(Λ, Z).

Here, Λ′ denotes the updated distribution of firms, and Γ represents the mapping function that
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describes how the distribution evolves given the current state Λ and the aggregate shock Z. This
distribution depends on the firms’ decisions, such as their production and pricing strategies, as well
as exogenous factors affecting these decisions, such as the cost of carrying inventories.

Sectoral firms. The output in sector j is produced by a monopolistically competitive firm that
combines the sales of individual firms, Si,t, where i ∈ I, using a standard Dixit-Stiglitz aggregator
with an elasticity of substitution denoted by γ:

Sj,t =
(� 1

0
ε

1
γ

i,tS
γ−1

γ

i,t di

) γ
γ−1

, (46)

where Sj,t represents the aggregate sales to firm in the sector j, Si,t denotes the specific sales of
firm i, εi,t represents the demand shocks for each firm i in period t, and γ > 1 is the elasticity of
substitution.19

Solving the cost-minimization problem of the firm in sector j implies that:

Si,t = 1
pγi,t

εi,tP
γ
j,tSj,t,

which is exactly the demand function that the wholesale firm will take as given, as represented by
equation (42), where pi,t denotes the price charged by firm i. Associated with this problem we have
a price index for the output in sector j denoted by:

Pj,t =
(� 1

0
p1−γ
i,t εi,tdj

) 1
1−γ

. (47)

Thus, an indivual firm’s sales are thus increasing in its demand shock and decreasing in its relative
price.

Retail firm. The retail firm aggregates the sales of the sectoral monopolistically competitive firms
using the following aggregator:

St =
� 1

0
S

γj −1
γj

j,t dj


γj

γj −1

, (48)

where St represents the aggregate sales, Sj,t denotes the specific sales of sector j, and γj is the
elasticity of substitution.

Solving the cost-minimization problem of the final firm implies that:

Sj,t = 1
P
γj

j,t

P
γj

t St,

where Pj,t denotes the price charged by firm j. The price Pt is the price index for aggregate sales St
19We impose γ > 1 to ensure positive marginal revenue.
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and can be expressed as:

Pt =
(� 1

0
P

1−γj

j,t dj

) 1
1−γj

. (49)

Problem of the sectoral firm. In addition to the production costs associated with acquiring
goods from individual firms, represented by

� 1
0 pi,tSi,tdi, we assume that sectoral firms j face a

quadratic price adjustment cost à la Rotemberg (1982) when setting their prices. Following the
litterature, this price adjustment cost is proportional to the magnitude of the sector j’s relative price

change and is given by κ

2

(
Pj,t
Pj,t−1

− 1
)2

St, where κ ≥ 0. Letting Pt denote the the price index of

the economy, we can thus express the real profit of sector j at date t, denoted by Ωj,t, as:

Ωj,t =
(
Pj,t
Pt

)
Sj,t −

� 1
0 pi,tSi,tdi

Pt
(1 − τS) − κ

2

(
Pj,t
Pj,t−1

− 1
)2

St − tSt , (50)

where tSt is a lump-sum tax used to finance the subsidy τS.

Sectoral firm j sets the price schedule (Pj,t)t≥0 to maximize the intertemporal profit as of
date 0:

max
(Pj,t)t≥0

E0

[ ∞∑
t=0

βt
Mt

M0
Ωj,t

]
,

where β is the discount factor of the households (since households own the sectoral firms) and
Mt

M0
is the pricing kernel, with Mt = U ′(Ct). Note that

� 1
0 pi,tSi,tdi

Pt
= ξi,t

(
Pj,t

Pt

)γ
Sj,t, where ξi,t =

� 1
0

(
pi,t

Pt

)1−γ
εi,tdi.

The sector’s optimization problem is therefore:

max
(Pj,t)t≥0

E0

∞∑
t=0

βt
Mt

M0

((Pj,t
Pt

)1−γj

− ξi,t
(
1 − τSt

) (Pj,t
Pt

)γ (Pj,t
Pt

)−γj
)
St − κ

2

(
Pj,t
Pj,t−1

− 1
)2

St − tSt

 .
The first-order condition for this problem yields:(

(1 − γj)
(
Pj,t
Pt

)−γj

+ (γj − γ)ξi,t
(
1 − τSt

)(Pj,t
Pt

)−(γj−γ) (Pj,t
Pt

)−1) St
Pt

− κ(Πt − 1)
(

1
Pj,t−1

Pj,t
St
Pj,t

)
+ βEt

[
Mt+1

Mt

κ(Πt+1 − 1)Pj,t+1

P 2
j,t

St+1

St
St

]
= 0,
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where the gross inflation rate is defined as Πt = Pj,t

Pj,t−1
. Simplifying this equation gives:

(1 − γj) + (γj − γ)ξi,t
(
1 − τSt

)( Pt
Pj,t

)1−γ
(Pj,t

Pt

)−γj 1
Pt
St − κ(Πt − 1)Πt

St
Pj,t

+ βκEt
[
Mt+1

Mt

(Πt+1 − 1)Πt+1
St+1

St

]
St
Pj,t

= 0.

By seeting τSt = 1−γ
γj−γ to achieve an efficient steady state and recognizing that this solution is

independent of the sector type j, we can define a symmetric equilibrium where Pj,t = Pt for all
sectors j. This leads to:(

(1 − γj) + (γj − γ)ξi,t
(
γj − 1
γj − γ

))
− κ(Πt − 1)Πt + βκEt

[
(Πt+1 − 1)Πt+1

St+1

St

Mt+1

Mt

]
= 0.

This result leads to the Phillips curve in this model, given by:

Πt(Πt − 1) = γj − 1
κ

(ξi,t − 1) + βEt
[
Πt+1(Πt+1 − 1)St+1

St

Mt+1

Mt

]
. (51)

Finally, observe that the real profit of the sector, which is independent of its type, is given
by:

Ωt =
(

1 − ξi,t − κ

2 (Πt − 1)2
)
St. (52)

4.1.3 Household preferences and program

Preferences. Households are expected-utility maximizers with a time-separable utility function
and a constant discount factor denoted by β ∈ (0, 1). Their period intertemporal utility U(Ct, Lt),
defined over aggregate consumption Ct and labor hours Lt, is assumed to be time-separable.
Preference shocks are not considered in this quantitative section.

U(Ct, Lt) = u(Ct) − v(Lt). (53)

The function u : R+ → R is twice continuosly differentiable, strictly increasing, and strictly concave,
with u′(0) = ∞, while v : R+ → R is twice continuosly differentiable, strictly increasing, and strictly
convex, with v′(0) = 0. Households rank streams of consumption (Ct)t≥0 and labor (Lt)t≥0 using
the intertemporal utility criterion E0

∑∞
t=0 U(Ct, Lt). Firms will maximize their profits, which are

returned to their shareholders—the representative household.

Household’s program. The resources of the representative household consist of labor income,
where the household receives the real wage wt in period t for each unit of endogenous labor effort
Lt supplied, as well as aggregate real profits Θt of the individual firms and Ωt of the sectoral firms.
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The household will use these resources to consume according to the following program:

max
{Ct,Lt}∞

t=0

E0

∞∑
t=0

βt

log(Ct) − χ
L

1+ 1
ϕ

t

1 + 1
ϕ

 , (54)

Ct ≤ wtLt + Θt + Ωt, (55)

where E0 denotes the expectation operator, β ∈ (0, 1) is the constant discount factor, ϕ > 0 is the
Frisch elasticity of labor supply, and χ is a parameter that scales labor disutility. The representative
household owns all the firms in the economy. The first-order condition for the representative
household’s maximization problem is:

v′(Lt) = wtu
′(Ct). (56)

4.1.4 Monetary authority

Assume that households are allowed to trade public debt, with the supply denoted by Bt at date
t. The public debt is issued by the government and is assumed to be free of default risk. This
nominal debt pays a predetermined nominal gross interest rate. In other words, the interest rate
between periods t− 1 and t is known at t− 1. Denote this gross nominal interest rate by RN

t−1, with
the corresponding real interest rate for public debt given by RN

t−1
Πt

, where Πt is the gross inflation
rate. Due to inflation, the real rate is no longer predetermined. Under these conditions, there is an
additional first-order condition for the household’s problem:

U ′(Ct) = βEt
[
RN
t

Πt+1
U ′(Ct+1)

]
.

The nominal interest rate RN
t is set according to the following simple Taylor rule:

RN
t

RN
=
(

Πt

Π

)ϕΠ

ιt, (57)

where RN is the steady-state nominal interest rate, Π is the steady-state inflation rate, and log(ιt) =
ρι log(ιt−1) + uιt represents a persistent monetary policy shock. Here, ρι denotes the persistence
of the monetary shock, ϕΠ indicates the response of the nominal interest rate to inflation, and
uιt ∼IID N (0, σ2

ι ).

4.2 Recursive Competitive Equilibrium

We provide the recursive competitive equilibrium for the household and firm problems. In this
formulation, given the aggregate state of the economy (Z,Λ), firms take their individual state (q, ε)
and set their price and labor decisions. This means the firm’s problem can be written recursively
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as:

V (q, ε;Z,Λ) = max
{p,l}

p(q, ε;Z,Λ)
P (Z,Λ) S(p(q, ε;Z,Λ), ε) − w(Z,Λ)l(q, ε;Z,Λ) − ψx

(q − S(p(q, ε;Z,Λ), ε))2

2
+ E [λ′V (q′, ε′;Z ′,Λ′)] , (58)
subject to:
q′ = q − S(p(q, ε;Z,Λ), ε) + Zl(q, ε;Z,Λ)α, (59)
q − S(p(q, ε;Z,Λ), ε) ≥ 0, (60)
Λ′ = Γ(Λ, Z), (61)

where λ′ represents the firm’s pricing kernel. Since firms are owned by the households, we impose
the household pricing kernel, i.e., λ′ = β u

′(C′)
u′(C) . One can observe that the structure of the problem

represented by (58) - (61) is similar to the one presented in the simple model (13) - (15). Note that
w(Z,Λ) = ψyZ2

2 if we set α = 1/2, and we are in the same structure as in the simple model.

Observe that firms with the same level of idiosyncratic demand shock and the same level
of quantity q choose the same price p(q, ε;Z,Λ) and labor demand l(q, ε;Z,Λ). The optimal firm
decisions are given by:

S(p(q, ε;Z,Λ), ε) + p(q, ε;Z,Λ)S ′(p(q, ε;Z,Λ), ε)
S ′(p(q, ε;Z,Λ), ε) + ψx(q − S(p(q, ε;Z,Λ), ε)) = w(Z,Λ)l(q, ε;Z,Λ)1−α

αZ
+ µ,

(62)
w(Z,Λ)l(q, ε;Z,Λ)1−α

αZ
= E

[
λ′
(

−ψx(q′ − S(p(q′, ε′;Z ′,Λ′), ε′)) + w(Z ′,Λ′)l(q′, ε′;Z ′,Λ′)1−α

αZ ′ + µ′
)]

,

(63)
q′ = q − S(p(q, ε;Z,Λ), ε) + Zl(q, ε;Z,Λ)α, (64)
µ(q − S(p(q, ε;Z,Λ), ε)) = 0. (65)

4.2.1 Stationary Recursive Competitive Equilibrium

Our market equilibriim definition can be stated as follows:
Definition 1. A recursive competitive equilibrium for this model is a collection of individual
functions V (q, ε;Z,Λ), l(q, ε;Z,Λ), p(q, ε;Z,Λ), y(q, ε;Z,Λ),q′(q, ε;Z,Λ), x(q, ε;Z,Λ), S(q, ε;Z,Λ),
π(q, ε;Z,Λ), λ(Z,Λ), C(Z,Λ), L(Z,Λ), aggregate quantities S(Z,Λ), X(Z,Λ), Q(Z,Λ), Π(Z,Λ),
Θ(Z,Λ), Ω(Z,Λ), aggregate price P (Z,Λ), price process w(Z,Λ), and a law of motion for the
distribution of firms Λ′ = Γ(Λ, Z), such that, for an initial quantity q and distribution of demand
shocks, the following conditions hold:

1. Given λ(Z,Λ), w(Z,Λ), P (Z,Λ), S(Z,Λ), Z ′, and Λ′, the functions V (q, ε;Z,Λ), l(q, ε;Z,Λ),
p(q, ε;Z,Λ), y(q, ε;Z,Λ), q′(q, ε;Z,Λ), x(q, ε;Z,Λ), S(q, ε;Z,Λ), and π(q, ε;Z,Λ) solve the
firm’s optimization problem, with
π(q, ε;Z,Λ) = p(q,ε;Z,Λ)

P (Z,Λ) S(p(q, ε;Z,Λ), ε) − w(Z,Λ)l(q, ε;Z,Λ) − ψx
(q−S(p(q,ε;Z,Λ),ε))2

2 .
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2. S(Z,Λ) =
(�

ε
1
γS(q, ε;Z,Λ)

γ−1
γ dε dΛ(q × ε)

) γ
γ−1

.

3. The aggregate individual firm’s profit is Θ(Z,Λ) =
�
π(q, ε;Z,Λ)dε dΛ(q × ε).

4. The aggregate sectoral profits are given by Ω(Z,Λ) =
(
1 − ξ(Z,Λ) − κ

2 (Π(Z,Λ) − 1)2
)
S(Z,Λ).

5. Goods markets clear at all dates:
C(Z,Λ) =

(
1 − κ

2 (Π(Z,Λ) − 1)2
)
S(Z,Λ) − ψx

2

�
x(q, ε;Z,Λ)2 dε dΛ(q × ε).

6. Given w(Z,Λ), the functions C(Z,Λ) and L(Z,Λ) solve the household optimization problem:
L(Z,Λ) =

(
w(Z,Λ)
χC(Z,Λ)

)ϕ
.

7. Labor markets clear at all dates:
�
l(q, ε;Z,Λ) dε dΛ(q × ε) = L(Z,Λ), i.e., w(Z,Λ) satisfies�

l(q, ε;Z,Λ) dε dΛ(q × ε) =
(
w(Z,Λ)
χC(Z,Λ)

)ϕ
.

8. X(Z,Λ) =
�
x(q, ε;Z,Λ) dε dΛ(q × ε) and Q(Z,Λ) =

�
q′(q, ε;Z,Λ) dε dΛ(q × ε).

9. The inflation path Π(Z,Λ) is consistent with the Phillips curve.

10. The law of motion Γ(Λ, Z) is consistent with the firms’ optimal decisions, such that the
distribution satisfies: Λ′ = Γ(Λ, Z).

5 Simulating the Model

To determine the economy’s reaction to monetary and business cycle shocks, we first need to establish
the stationary competitive equilibrium for the model. In Appendix H, we discuss the algorithm used
to solve for the steady state and present the results of the equilibrium conditions in the steady state.
The approach involves simulating the full model (i.e., without aggregate and monetary shocks) with
a steady-state inflation rate of Πt = 1.

Solving a heterogeneous agents model with aggregate shocks is computationally challenging.
In such cases, the vector of state variables, which includes the distribution of firms, is of
infinite dimension. Consequently, the policy functions depend on this infinite-dimensional object.
Specifically, the vector of state variables (Z,Λ) is infinite, with Λ being the infinite component.

To address this challenge, we use the projection and perturbation methods proposed by
Reiter (2009), combined with the method of Young (2010) to simulate a cross-section and solve for
the recursive competitive equilibrium. This approach involves three steps: First, we discretize the
model. Second, we solve for the non-stochastic steady state of the model with idiosyncratic demand
shocks but no aggregate uncertainty. Finally, we linearize around this non-stochastic steady state
and solve the dynamics using a rational expectations solver. Details of this algorithm can be found
in Appendix H.
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5.1 The calibration and steady-state distribution

Below, we detail our calibration strategy.

Preference Parameters. The discount factor is set to β = 0.95. The period utility is specified
as

U(·) = log(C) + 1
χ

L
1
ϕ

+1

1
φ

+ 1 ,

where the Frisch elasticity of labor supply is set to ϕ = 0.5, as recommended by Chetty et al. (2011)
for the intensive margin. We set the labor-scaling parameter to χ = 0.8, which normalizes the
aggregate labor supply to 0.33.

Technology and TFP Shock. The production function is assumed to be of the form y = Zlα,
where α is set to 0.4. Firms face a quadratic cost for carrying inventories, with a scaling parameter
set to ψx = 0.5. The TFP shock process follows a standard AR(1) process: Zt = Z0e

zt , where zt
is defined as zt = ρzzt−1 + uzt , with uzt ∼IID N (0, σ2

z). We use standard values of ρz = 0.95 and
σz = 0.31% to achieve a deviation of the TFP shock zt equal to 1% at a quarterly frequency (see
Den Haan (2010)).

Idiosyncratic Demand Shocks. Idiosyncratic demand shocks follow an AR(1) process: εi,t =
ρϵεi,t−1 + uεi,t, where uεi,t ∼IID N (0, σ2

ε). The calibration features an autocorrelation parameter
ρϵ = 0.95 and a standard deviation σε = 0.10. This AR(1) process is discretized using the procedure
from Tauchen (1986), with 5 states.

Inventories Cost Shock. In the exercises, we also account for shocks in the cost of carrying
inventories. When introducing these shocks, we assume that the cost of carrying inventories follows
the process ψx,t = ρψxψx,t−1 + uψx

t , where uψx
t ∼IID N (0, σ2

ψx
). We use standard values of ρψx = 0.95

and σψx = 0.31% to achieve a deviation of the inventories cost shock ψx,t equal to 1% at a quarterly
frequency.

Monetary Parameters. The rule governing the persistent monetary policy shocks affecting the
nominal interest rate is defined as log(ιt) = ρι log(ιt−1) + uιt, with uιt ∼IID N (0, σ2

ι ). Our goal in this
part is to solve the model to study the effect of a 1% contractionary monetary policy shock on the
dynamics of the economy using a standard Taylor rule. To implement this exercise, we set ρι = 0.5
and ϕΠ = 1.5. These are standard values in the literature (see Galí (2015)). We assume an elasticity
of substitution of γ = 2 and a price adjustment cost of κ = 0.2.

Table 4 provides a summary of the model parameters.
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Parameter Description Value

Preference parameters
β Discount factor 0.95
φ Frisch elasticity 0.5
χ Scaling parameter labor supply 0.8

Technology parameters
α Labor share 0.4
ψx Cost to carry inventories 0.5

Shock process
ρz Autocorrelation TFP shock 0.95
σz Standard deviation TFP shock 0.31
ρε Autocorrelation demand shock 0.95
σε Standard deviation demand shock 0.10
ρψx Autocorrelation carry inventories shock 0.95
σψx Standard deviation carry inventories shock 0.31
ρβ Autocorrelation preference shock 0.95
σβ Standard deviation preference shock 0.31
ρι Autocorrelation monetary policy shock 0.5
σι Standard deviation monetary policy shock 0.01

Monetary parameters
γ Elasticity of demand with respect to price 2.0
ϕΠ Taylor coefficient baseline 1.5
κ Price adjustment cost 0.2

Table 4: Parameter values in the baseline calibration. See text for descriptions and targets.
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5.2 Model for Inflation Dynamics

Using the calibration from Table 4, we now solve for the model’s dynamics under the assumption of a
persistent shock to the nominal interest rate. Specifically, we consider an increasing nominal interest
rate, with the trajectory of this rate anticipated by the agents. The results and the algorithm for
solving the steady state are discussed in Appendix H.

We begin by simulating the model following two shocks: a positive shock that increases the
cost of carrying inventories and a negative TFP shock. The Impulse Response Functions (IRFs) are
shown in Figures 7 and 8. The goal is to determine if rising inventory costs can be rationalized by
changes in TFP productivity.

Comparing these scenarios sheds light on the transmission mechanisms between inventory
costs and TFP shocks. Each figure panel displays the percentage change in key variables, except
for the inflation rate, which is reported in absolute terms. For instance, Panel 1 of Figure 7 shows
a persistent increase in ψx over 100 periods, following an initial increase of 0.3%, with inflation as
the exception.

Following the increase in the cost of carrying inventories, as depicted in Figure 7, firms
respond by sharply reducing the total inventory levels they hold.

As inventory costs rise, firms seek to minimize their exposure to these higher costs by lowering
their inventory holdings. This reduction in inventories leads to several important adjustments in the
economy. Over time, as firms reduce prices to clear inventories (see Panel 3 of Figure 7), they begin
to depend more on production to meet demand. This drives firms to ramp up production (Panel 6
of Figure 7), creating a stronger need for labor. As a result, labor increases (Panel 5 of Figure 7) as
firms shift their focus from holding inventories to boosting production, which leads to an immediate
increase in wages (Panel 4 of Figure 7).

With the need for more production, both the demand for labor and wages increase. Higher
wages, in turn, further stimulate labor supply. Firms, no longer able to rely on maintaining large
inventories, are forced to meet demand through real-time production, amplifying the importance of
labor in the economy.

As production increases and inventories shrink, the economy shifts toward a more production-
intensive equilibrium. Firms rely less on the costly storage of goods and more on their ability to
quickly produce and sell. This shift reveals a critical relationship between inventory costs and broader
economic performance—inventory management decisions can directly influence labor markets, price
levels, and overall production decisions.20

Note, however, that a negative TFP shock initially leads to an increase in inventories.
Following such a shock, firms tend to hold more inventories, likely in an attempt to raise prices
(Panel 3 of Figure 8) to compensate for the reduced quantity of goods available for sale, as shown in
Panels 6 and 7 of Figure 8. As prices rise, real wages decline (Panel 4 of Figure 8) because workers’

20In Appendix I.1, we illustrate a preference shock in β, following a similar approach to that used in Section 3.
In this instance, the main conclusions align with those of a shock to inventory carrying costs, though the effects are
more pronounced.
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purchasing power erodes with the higher cost of goods. Labor supply increases (Panel 5 of Figure 8)
in response to this shock, which can be interpreted as consumers offering more labor. However, this
increase in labor supply is not enough to offset the reduction in production caused by the negative
TFP shock.

This rise in inventory holdings occurs as firms anticipate reduced production capacity. Over
time, as the negative TFP shock persists and firms experience prolonged reductions in production
capacity, the inventory levels are no longer sustainable. The decrease in production eventually forces
firms to rely on these inventories to meet ongoing demand, leading to the reduction of stockpiles.

As can be seen in Panel 2 of Figure 8 over time we can see a reduction in inventories. This
reduction can be attributed to several factors. First, firms are unable to replenish their inventories
as they are producing less. As a result, they are forced to deplete their existing reserves in order to
meet ongoing demand. Second, holding large inventories incurs costs, such as storage represented by
ψx in our model. With reduced productivity, these costs become more burdensome, pushing firms
to reduce their inventory holdings. Finally, while firms may initially raise prices to take advantage
of the scarcity created by lower production, this strategy is not sustainable in the long term. As
demand weakens due to higher prices, the incentive to hold onto inventories decreases, leading firms
to sell off their stock at lower prices, further contributing to the reduction in inventory levels.

Figure 7: Impulse Response Functions for the selected variables following a positive shock to ψx.

35



Figure 8: Impulse Response Functions for the selected variables following a negative shock to Z.

The dynamics of increasing inventory carrying costs and a negative TFP shock are
comparable in how firms adjust inventory levels. When carrying costs rise, firms reduce inventories to
avoid higher expenses, relying more on production to meet demand, as shown in Figure 7. Similarly,
after a negative TFP shock, firms initially increase inventories to buffer against lower output but
eventually deplete stockpiles as production remains low (Figure 8). In both cases, rising costs or
reduced productivity drive firms to reduce inventories, impacting prices, labor demand, and overall
equilibrium.

Comparing the two scenarios, we observe that the volatility of the main variables is greater
for the same shock magnitude when experiencing a TFP shock compared to a shock affecting the cost
of carrying inventories. This is likely because TFP shocks pose a deeper challenge by disrupting the
fundamental productive capacity of the economy, thereby amplifying volatility across key variables.

These findings are confirmed by the second-order moments presented in Table 5, reported in
columns (1) and (2).
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ψx Z ι ι
Int. rate shock Int. rate shockϕΠ = 1.5 Int. rate

w Mean 1.002 1.008 1.003 1.012
Std 0.005 0.018 0.021 0.045

Π Mean 1.002 1.000 1.001 1.007
Std 0.537 0.025 0.689 2.776

X Mean 0.321 0.324 0.322 0.336
Std 0.031 0.055 0.115 0.239

C Mean 1.592 1.607 1.596 1.630
Std 0.015 0.038 0.057 0.117

L Mean 0.261 0.261 0.261 0.259
Std 0.005 0.010 0.018 0.036

Q Mean 0.879 0.883 0.880 0.893
Std 0.010 0.022 0.035 0.076

Y Mean 0.558 0.560 0.558 0.556
Std 0.002 0.007 0.008 0.016

GDP Mean 1.626 1.642 1.630 1.666
Std 0.015 0.038 0.057 0.119

Correlations
corr(X,Π) 0.9408 -0.3931 0.8702 0.8993
corr(X,X−1) 0.9946 0.9869 0.7907 0.9818
corr(GDP,GDP−1) 0.9950 0.9950 0.8213 0.9827

Table 5: First and second moments for key variables are provided for the following scenarios: a
shock to ψx, a shock to Z, a shock to ι with a Taylor rule (ϕΠ = 1.5), and a shock to ι with a known
interest rate path.

For each variable, we report the steady-state value (labeled “Mean”) and the normalized
standard deviation in percentage terms, which is the standard deviation divided by the mean (labeled
“Std”), except for inflation, where only the standard deviation is reported. The second part of the
table presents correlations. Notice that the results in Table 5 are consistent with the IRFs for the
aggregate variables.

To conclude this section, we conduct an exercise comparing two scenarios: one with an
initial quantity of inventories and another with a higher initial inventory level. The objective of this
comparison is to analyze how a shock to the carrying cost of inventories affects the evolution of total
inventories and its impact on prices. We observe that a higher initial level of inventories generally
results in greater volatility of the selected variables.

Furthermore, for the same shock, the reduction in total inventories is more pronounced
when starting with a higher inventory level. We hypothesize that the decrease in prices will be
more substantial in the economy with a higher initial inventory level. This is because firms have
greater incentives to reduce their inventories and may achieve this by lowering prices further to boost
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demand. Our analysis of the IRFs confirms this hypothesis: a higher initial inventory level leads to
a greater reduction in prices for the same shock. The IRFs are displayed in Figure 9.

Figure 9: Impulse Response Functions for the selected variables following a positive shock to ψx,
comparing two scenarios: a higher inventory level and a lower inventory level.

Doing a similar exercise for a negative TFP we can notice that the higher the inventoriers
level, the lower will be the increase in prices. These resutls are depicted in Figure 10.
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Figure 10: Impulse Response Functions for the selected variables following a negative shock to Z,
comparing two scenarios: a higher inventory level and a lower inventory level.

The goal of this exercise, as stated in the simple model presented in Section 3, is to
demonstrate that inventories play a crucial role in price decisions. Specifically, we claim that a
higher inventory level leads to a smaller reduction in prices for the same type of shock.

5.3 Monetary Policy

We now examine an economy where monetary policy is implemented via a Taylor rule as in

RN
t

RN
=
(

Πt

Π

)ϕΠ

, (66)

where RN is the steady-state nominal interest rate, Π is the steady-state inflation rate, and ϕΠ is
the response of the nominal interest rate to inflation.

First, we compare two scenarios: one where the Central Bank adopts a policy rule according
to the Taylor Rule with ϕΠ = 1.5 as in Galí (2015) and reacts to deviations from the steady-state
inflation rate set at Πt = 1, and another where there is a pesisent shock to the nominal interest rate
as discussed in Section 5.2.

The goal is to assess the effects of the endogenous response of monetary policy and to
understand the model dynamics under different inflation paths. When the Taylor Rule is applied,
as expected, all selected variables exhibit lower volatility and return more quickly to their steady-
state values. In particular, the Taylor Rule helps stabilize inflation, preventing it from becoming
excessively volatile.
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Following a contractionary monetary policy shock, the level of inventories decreases, but the
reduction in prices is less pronounced compared to the scenario where agents can anticipate the
path of interest rate. This outcome highlights the Taylor Rule’s role in minimizing deviations from
steady-state values, thereby moderating the impact on prices.

Those results are depicted in Figure 11 for a 1% contractionary monetary policy.

Figure 11: Impulse Response Functions for selected variables following a 1% contractionary monetary
policy.

As previously argued, an increase in the carrying cost of inventories can be linked to a
contractionary monetary policy. In Appendix J, we analyze shocks on ψx and Z when the monetary
authority follows a Taylor rule. Our analysis demonstrates that the effects of a monetary policy
contraction are equivalent to those of an increase in inventory carrying costs. Specifically, by
comparing Figures 11 and 48 in Appendix J, we observe that the effects are strikingly similar.

These findings are confirmed by the second-order moments presented in Table 5, reported in
columns (3) and (4).

Finally, we compare two distinct situations: one with a low level of inventories and another
with a higher level. First, we examine a monetary policy contraction when the path of interest rate
is known. In this scenario, we observe that a higher inventory level leads to a greater reduction in
the total inventory level. Consequently, the reduction in prices needed to decrease these inventory
levels is more pronounced. As discussed in Section 3.5, the volatility of the variables is higher in the
economy with a larger inventory level, likely due to a stronger reaction in this case. These results
are depicted in Figure 12.
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Figure 12: Impulse Response Functions for selected variables following a 1% contractionary monetary
policy without a Taylor Rule, compared for two distinct levels of inventories.

Now we present the results when the Taylor rule is applied with a coefficient of ϕΠ = 1.5.
We observe that, under the Taylor rule, the decrease in prices is similar across both inventory levels.
This outcome occurs because the Taylor rule aims to minimize deviations from the steady-state
inflation rate. Consequently, the paths of the selected variables are similar in both cases, as the
Taylor rule effectively moderates the impact of monetary policy shocks. Figure 13 shows the IRFs.
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Figure 13: Impulse Response Functions for selected variables following a 1% contractionary monetary
policy with a Taylor Rule of ϕΠ = 1.5, compared for two distinct levels of inventories.

In order to understand the model dynamics when inflation follows a different path, we
examine two inventory levels, higher and lower, in a scenario where the Taylor rule coefficient is
set to ϕΠ = 1.01. This represents a situation where the endogenous response of monetary policy
is weaker, and thus, inventories should play a stronger role in the inflation path. The IRFs for
this case are shown in Figure 14. By comparing Panel 3 of Figure 14 with Panel 3 of Figure 13,
we observe that a lower Taylor coefficient results in a greater divergence between the two inflation
paths. This indicates that the less hawkish the Central Bank, the more inventories influence the
inflation trajectory. Moreover, one can observe that the overall effect in reducing inflation is now
stronger, which confirms our claim that inventories play now a more significant role. Consequently,
monetary policy contractions will have a larger effect in reducing inflation as the inventory level
increases.
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Figure 14: Impulse Response Functions for selected variables following a 1% contractionary monetary
policy with a Taylor Rule of ϕΠ = 1.01, compared for two distinct levels of inventories.

This occurs because the model already incorporates a natural mechanism through firms’
price-setting decisions that helps reduce inflation. This result suggests that monetary contractions
reduce inflation more effectively when inventory levels are high, implying that central banks may
not need to pursue overly aggressive tightening when inventory levels are elevated.21

5.4 Effect of Monetary Policy Shocks on Inflation

Although the previous exercise illustrates the role of inventories in the inflation path, particularly
when the monetary authority is less hawkish, it presents a challenge. While we compared overall
inventory levels that are relatively close, with one scenario featuring a higher total quantity, the
steady states are not the same. This suggests that other factors are likely at play.

To better understand the impact of monetary policy shocks on inflation in a high-inventory
context and to address this inconsistency, we will conduct the following exercise. We introduce a
shock to the variance of the firm’s idiosyncratic shocks, which results in an increase in inventory
levels due to greater firm-level risk stemming from the uncertainty shock. This approach allows us
to compare economies operating under the same steady state.

Next, we introduce a contractionary monetary policy shock of 1% as described in equation
(57) at two different points in time: when inventory levels are high and when they are low. By
simulating these scenarios, we can observe how the inflation paths differ between the two cases,
highlighting the effects of monetary policy shocks when inventory levels are elevated.

21In Appendix K we show the same exercise for the case where we have a negative shock in Z.

43



Figure 15 illustrates the results of this exercise.

Figure 15: Effect of Monetary Policy Shock on Inflation with ϕΠ = 1.5, compared for two distinct
levels of inventories with the same steady state.

Unlike the previous exercises we have conducted, the objective here is to examine how
variations in inventory levels due to an uncertainty shock influence price dynamics. Since we are
comparing scenarios that maintain the same steady state but differ in inventory levels, it is evident
that the differences in inventories are driving the results.

By introducing an uncertainty shock that increases the variance of the uncertainty shock
by 1%, we can observe that a monetary policy contraction of the same magnitude results in
approximately a 3 percentage point decrease in inflation. These results highlight the significance
of inventory levels throughout the business cycle in understanding their impact on inflation and
emphasize that higher inventory levels lead to a greater reduction in prices following a contractionary
monetary policy shock.

6 Empirical evidence from the US housing market

Our model also gives rise to a clear, testable hypothesis: prices should be more responsive to the
stance of monetary policy when inventories stand at a higher level.

We test this prediction in the housing market, for two main reasons. Firstly, by looking at
housing costs, we can directly get at a major component of the consumption basket (recall footnote
3). Secondly, in the housing market, the concepts residing at the core of our theory are relatively
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well-defined. Ideally, one would have firm-level data on inventories at the goods level while being
able to match those with associated goods-level prices at a high frequency. In practice, however,
price- and inventory data sum over various types of goods, which creates major challenges for our
exercise. By limiting our focus to housing, we are able to side-step these aggregation issues, while
at the same time looking at a significant item in the consumption basket. We do acknowledge that
our strategy implies that our findings may be specific to the housing market. But even in that case,
we see our results as interesting given the importance of housing in the typical consumption basket.

To test our model’s prediction, and thereby the cost-of-carry channel of monetary policy
transmission, we run Local Projections (LPs) of the following form, at the monthly frequency:

∆h lnHCt+h = αh + βhMPSt + γh (MPSt × INVt) + δhXt + ϵt,h, (67)

where ∆h lnHCt+h ≡ lnHCt+h − lnHCt−1 is the cumulative change in the natural log of the
housing cost series “HC” over h months. To measure the cost of housing, we use the CPI owner’s
equivalent rent (OER) series (but results are robust to using the housing-component in the PCE
series instead, or to using the “shelter” component of the CPI, which is slightly broader than OER).22

The variable “INV ” represents the fraction of homes being vacant, which represents the inventory
of homes looking to be utilized (see Appendix L.1 for details on how this variable is constructed).
Finally, “MPS” is the monetary policy shock, which we draw from the series provided by Bauer
& Swanson (2023). Since they take great care in ensuring that the series is orthogonalized with
respect to available data, we run the LPs by only controlling (in Xt) for lags of the shock and its
interactions with the housing inventory indicator (so that the righthand-side of (67) features 12
months worth of MPS-realizations and MPS × INV -interactions).23 As documented in Appendix
L.2, the Bauer-Swanson shocks produce very intuitive responses in standard variables, like consumer
prices, industrial production, unemployment, and equity prices – comforting us that the series is
getting at true monetary policy shocks.

When estimating a regression of the form of (67) without the interaction term,

∆h lnHCt+h = αh + βhMPSt + δhXt + ϵt,h, (68)

we see in Figure 16 that contractionary monetary policy shocks tend to lower housing costs. Figure
16 points to a substantial lag in the response, which is to be expected given the construction of the
OER series (which not only looks at rentals offered on the market contemporaneously, but takes
into account that rents only tend to change when leases expire; see Conner et al. (2024) and Cotton
(2024) for more details on the calculation of OER).

22Relative to OER, the CPI-shelter series also includes “lodging away from home” and insurance costs, among other
items.

23Note that the Frisch–Waugh–Lovell theorem implies that this is equivalent to a regression in which MPS
represents the unorthogonalized shock but the vector of controls Xt includes all variables that Bauer & Swanson
(2023) orthogonalize on (Lloyd & Manuel 2024).
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Figure 16: Response of CPI OER to a 25-bp contractionary monetary policy shock, estimated via equation (68).
Shaded area represents the 90% confidence interval, calculated via Newey-West standard errors.

This result, however, is unconditional in nature – whereas our model suggests that inventory
levels matter for the transmission of monetary policy. This motivates us to estimate (67), which
includes an interaction term “MPSt × INVt” between the monetary policy shock and our “housing
inventory” variable (the fraction of homes being vacant). Results of this exercise are plotted in the
next two figures. Figure 17 shows that, when the housing vacancy rate stands at its sample average,
a monetary tightening has virtually no effect on the cost of housing. Looking at the coefficient “γ” on
the interaction term (in Figure 18) however demonstrates that monetary policy has greater leverage
over the cost of housing when more properties are vacant – i.e., when there is a greater inventory of
housing looking for an occupant.24 As shown in Appendix L.3, this result is highly robust to adding
further controls, including the rate of unemployment (to proxy for the state of the business cycle)
which suggests that we are not picking up variations driven by business cycle fluctuations.25 This
supports the prediction from our theoretical model, that inventories matter for the transmission of
monetary policy – with higher inventory levels making sellers more responsive to changes in the
stance of monetary policy. This is consistent with the notion that a tighter housing market (lower
INVt) enables landlords to pass on any increases in their borrowing costs (e.g., following a monetary
policy tightening). However, when there are more vacant properties (higher INVt), landlords have
less market power and they become more inclined to lower their price in response to a monetary
contraction – reflecting the higher opportunity cost of not having the property occupied. As Figure
62 in Appendix L.3 shows, our main result is also visible when using the overall CPI as dependent
variable in (67) – which is perhaps to be expected given that OER accounts for about one-third of
the total CPI basket. A similar picture emerges when looking at the overall PCE index.

24Interestingly, Robert Reffkin (the founder and CEO of real estate firm Compass) conveyed exactly this notion
when stating in 2023 that real estate prices “have peaked, and that rising inventories could bend prices in the
months ahead” (see https://uk.marketscreener.com/quote/stock/COMPASS-INC-120835016/news/Robert-Reffkin-
CEO-of-Compass-Real-estate-prices-down-inventories-up-45444716/).

25The correlation between the housing vacancy rate (“INVt”) and the rate of unemployment is quite low, at 0.24.
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Figure 17: Response of CPI OER to a 25-bp contractionary monetary policy shock, estimated via equation (67),
when the home vacancy rate “INVt” stands at its historical average (INVavg). The figure plots β̂h + γ̂h · INVavg.

Shaded area represents the 90% confidence interval, calculated via Newey-West standard errors.
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Figure 18: Additional response of CPI OER to a 25-bp contractionary monetary policy shock, due to a 1-pp increase
in the home vacancy rate, estimated via equation (67). The figure plots γ̂h. Shaded area represents the 90% confidence
interval, calculated via Newey-West standard errors.

Finally, the data also confirm the model’s prediction regarding the inventory of housing –
with the home vacancy rate (“INVt”) falling in response to a contractionary monetary policy shock;
as Figure 19 shows, this result is mainly driven by rentals (as opposed to owner-occupied houses).
The direction of this general finding is consistent with the cost-of-carry logic, which tells us that
tighter monetary policy implies a greater opportunity cost for leaving a home unoccupied. Our
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result in Figure 18 suggests that, one way in which “idle time” is being reduced when the housing
inventory stands at an elevated level, is by reducing the price.

   

(a) Housing vacancy rate                                      (b) Rental vacancy rate                                      (c) Homeowner vacancy rate 

Figure 19: Response of (a) home vacancy rate, (b), rental vacancy rate (c) homeowner vacancy rate to a 25-bp
contractionary monetary policy shock, estimated via ∆hINV t+h = αh + βhMPSt + δhXt + ϵt,h. The figure plots β̂h.

Shaded area represents the 90% confidence interval, calculated via Newey-West standard errors.

7 Conclusion

We develop a model to analyze the cost-of-carry channel of monetary policy, focusing on how interest
rates impact firms’ inventory management and pricing strategies. By examining the effects of higher
interest rates on the costs of holding inventories, we show that firms are incentivized to reduce prices
to mitigate these costs, thereby influencing inflation dynamics.

Applying our model to the U.S. housing market, we find that higher inventory levels intensify
the disinflationary impact of monetary policy. This suggests that monetary policy can be less
aggressive in high-inventory environments to achieve similar inflation outcomes.

Our methodology highlights the significance of inventory management in monetary policy
transmission, offering a refined perspective on inflation dynamics that complements traditional
aggregate demand channels. This approach provides valuable insights for shaping effective monetary
policy strategies.
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Appendix

A Proof of Proposition 1

Applying the Implicit Function Theorem to (3), we obtain:

∂p

∂ψx
= x0 − S(p)
ψxS ′(p) + S′′(p)

S′(p)2S(p) − 2
.

Since the non-negativity constraint on inventories implies that S(p) ≤ x0, we have ∂p
∂ψx

<

0 ⇔ ψxS
′(p) + S′′(p)

S′(p)2S(p) − 2 < 0. Given that S ′(p) < 0, this condition holds when S′′(p)
S′(p)2S(p) < 2.

From the chain rule, it follows that S ′(p) = 1
p′(S) and S ′′(p) = −S ′(p)3p′′(S) = − p′′(S)

p′(S)3 .
Using these relationships, we can rewrite S′′(p)

S′(p)2S(p) = −p′′(S)
p′(S) S(p). This reflects the convexity of the

demand curve, and Mrázová & Neary (2017) shows that profit-maximizing behavior guarantees that
−p′′(S)

p′(S) S(p) < 2, which implies that S′′(p)
S′(p)2S(p) − 2 < 0, thereby proving that ∂p

∂ψx
< 0. The second

part of the proposition follows trivially from the observation that the steepness of this derivative
increases with x0.

B Equilibrium conditions

B.1 The firm’s first-order condition

By taking first-order conditions of the problem in (13) - (15) with respect to p and y, we obtain the
following results, respectively:

S(p) + pS ′(p)
S ′(p) + ψx(q − S(p)) = βE[V ′(q′)] + µ,

ψyy = βE[V ′(q′)].

Notice that V ′(q) = −ψx(q − S(p)) + βE[V ′(q′)] + µ. Therefore, using the envelope condition and
the aforementioned first-order conditions, we can summarize the solution to this problem by the
following equations:

S(p) + pS ′(p)
S ′(p) + ψx(q − S(p)) = ψyy + µ, (69)

ψyy = βE [−ψx(q′ − S(p′)) + ψyy
′ + µ′] , (70)

q′ = q − S(p) + y, (71)
µ(q − S(p)) = 0. (72)
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Observe the elasticity of demand is given by ES
p = pS ′(p)

S(p) , which implies we can rewrite

S(p) + pS ′(p)
S ′(p) = S(p)

S ′(p)(1 + ES
p ).

Using this expression and manipulating equations (16) - (19) we have:

(ψy + βψx)y = β
S(p)
S ′(p)(1 + ES

p ) + βψxE(S(p′)) + βψy (E(y′) − y) + β (E(µ′) − µ) . (73)

B.2 Proof of Proposition 2

Applying (17) for the case when the economy was in state H and is currently in state L, leads to:

ψyyLH = β {(−ψx(qLH − S(pLH) + yLH − S(pHL)) + ψyyHL + µHL)} . (74)

Now, applying (16) and observing:

S(pLH)
S ′(pLH)(1 + ES

pLH
) + ψx(qLH − S(pLH)) = ψyyLH + µLH . (75)

Observe that if the economy transitions to the state L, then we have S(pLH) < qLH .
Therefore, the Lagrange multiplier in this case will be:

µLH = 0. (76)

Replacing (75) into (74) we finally reach:

(ψy + βψx + βψy)yLH = β
S(pLH)
S ′(pLH)(1 + ES

pLH
) + βψxS(pHL) + βψyyHL + βµHL. (77)

Using (17) for the case when the economy was in state L and is currently in state H:

ψyyHL = β
{
α(−ψx(qHL − S(pHL) + yHL − S(pHH)) + ψyyHH + µHH)+ (78)

(1 − α)(−ψx(qHL − S(pHL) + yHL − S(pLH)) + ψyyLH + µLH)
}
.

Using (16) for this case:

S(pHL)
S ′(pHL)(1 + ES

pHL
) + ψx(qHL − S(pHL)) = ψyyHL + µHL. (79)

Rearranging the terms above:

(ψy + βψx)yHL = − βψx(qHL − S(pHL)) + βψx(αS(pHH) + (1 − α)S(pLH))+ (80)
βψy(αyHH + (1 − α)yLH) + βαµHH .
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Using the same idea for the case the economy was in state H and is currently in state H we reach:

(ψy + βψx)yHH = − βψx(qHH − S(pHH)) + βψx(αS(pHH) + (1 − α)S(pLH))+ (81)
βψy(αyHH + (1 − α)yLH) + βαµHH .

Replacing (79) into (77) results in:

(ψy + βψx + βψy)yLH = β
S(pLH)
S ′(pLH)(1 + ES

pLH
) + β

S(pHL)
S ′(pHL)(1 + ES

pHL
) + βψxqHL. (82)

Here, we assume that in all cases, when the current situation of the firm reflects a High-
Demand shock, the firm will have S(pH) ≥ qH . Consequently, the firm will set prices such that
S(pHH) = qHH and S(pHL) = qHL. Hence, the prices when the current state is a High-Demand
shock will be:

pHH = S̄−1
(
qHH

1 + ∆

)
, (83)

pHL = S̄−1
(
qHL

1 + ∆

)
, (84)

where we let the demand function S̄ admit an inverse. Also, observe that regardless of the previous
state being L or H, we argue that there exists a price at which the quantity available will be able to
meet the demand. The Lagrange multiplier constraint in this case, given by equation (16), is such
that:

µHH = S(pHH)
S ′(pHH)(1 + ES

pHH
) − ψyyHH , (85)

µHL = S(pHL)
S ′(pHL)(1 + ES

pHL
) − ψyyHL. (86)

We need to identify pHH , pHL, pLH , yHH , yHL, and yLH as functions of q. The equations that
characterize this system are given by:

pHH = S−1 (qHH) , (87)
pHL = S−1 (qHL) , (88)
S(pLH)
S ′(pLH)(1 + ES

pLH
) + ψx(qLH − S(pLH)) = ψyyLH , (89)

(ψy + βψx + βψy)yLH = β
S(pLH)
S ′(pLH)(1 + ES

pLH
) + β

S(pHL)
S ′(pHL)(1 + ES

pHL
) + βψxqHL, (90)

(ψy + βψx)yHL = βψx(αS(pHH) + (1 − α)S(pLH)) + βψy(αyHH + (1 − α)yLH) + βαµHH , (91)
(ψy + βψx)yHH = βψx(αS(pHH) + (1 − α)S(pLH)) + βψy(αyHH + (1 − α)yLH) + βαµHH , (92)

µHH = S(pHH)
S ′(pHH)(1 + ES

pHH
) − ψyyHH , (93)

µHL = S(pHL)
S ′(pHL)(1 + ES

pHL
) − ψyyHL. (94)
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B.3 Proof of Result 1

Assume the demand function is given by:

S̄(p) = 1
pγ
.

In this case, the system given by equations (21) - (28) is as follows:

pHH =
(

1 + ∆
qHH

) 1
γ

, (95)

pHL =
(

1 + ∆
qHL

) 1
γ

, (96)

pLHη + ψx

(
qLH − 1

pγLH
(1 − ∆)

)
= ψyyLH , (97)

(ψy + βψx + βψy)yLH = βη (pLH + pHL) + βψxqHL, (98)

(ψy + βψx)yHL = βψx

(
α

1
pγHH

(1 + ∆) + (1 − α) 1
pγLH

(1 − ∆)
)

+ (99)

βψy(αyHH + (1 − α)yLH) + βαµHH ,

(ψy + βψx)yHH = βψx

(
α

1
pγHH

(1 + ∆) + (1 − α) 1
pγLH

(1 − ∆)
)

+ (100)

βψy(αyHH + (1 − α)yLH) + βαµHH ,

µHH = pHHη − ψyyHH , (101)
µHL = pHLη − ψyyHL, (102)

where η ≡
(
γ − 1
γ

)
.

We are looking for an equilibrium such that x′
HH = x′

HL = 0. Therefore, we have:

q′
HH = yHH + x′

HH = yHH ,

q′
HH = yHL + x′

HL = yHL,

which means q′
HH = yHH = yHL ≡ yH . Also, observe that the only way to reach state L is from

state H, which means:

q′
LH = yHH + x′

HH = yHH ,

q′
LH = yHL + x′

HL = yHL,

which means q′
LH = yHH = yHL ≡ yH . This implies:

q′
HH = q′

LH = yHH = yHL ≡ yH . (103)
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Observe now that given the previous state is L, necessarily the current state is H. Therefore:

q′
HL = yLH + x′

LH , (104)

where x′
LH = qLH − S(pLH) = qLH − 1

pγLH
(1 − ∆). This implies:

q′
HL = yL + qLH − 1

pγLH
(1 − ∆), (105)

where yLH ≡ yL. Since qHH is different from qHL, then we argue there exists an equilibrium such
that pHH ̸= pHL ̸= pLH . In such an equilibrium, we have three types of firms with total quantities
qHH , qLH , and qHL with decisions to produce yH and yL that are dependent only on the current level
of demand.

Using (103) and (105), we can observe:

pHH =
(

1 + ∆
yH

) 1
γ

, (106)

pHL =
(

1 + ∆
yL + yH − p−γ

LH(1 − ∆)

) 1
γ

. (107)

Finally one can rewrite the system represented by (95) - (102) as:

pLHη + ψx
(
yH − p−γ

LH(1 − ∆)
)

= ψyyL,

(ψy + βψx + βψy)yL = βη

pLH +
(

1 + ∆
yL + yH − p−γ

LH(1 − ∆)

) 1
γ

+ βψx(yL + yH − p−γ
LH(1 − ∆)),

(ψy + βψx)yH = βψx
(
αyH + (1 − α)p−γ

LH(1 − ∆)
)

+ βψy(1 − α)yL + βα

(
1 + ∆
yH

) 1
γ

η.

In the system above, we need to identify pLH , yL, and yH . First, observe:

pLH =
(

(1 − ∆)(ψyyL)γ
(ψyyL)γ(yL + yH) − (βη)γ(1 + ∆)

) 1
γ

, (108)

and finally, yH and yL are determined by solving:

ψyyH = β(1 − α)yL(ψx + ψy) − βψx(1 − α)
(
βη

ψyyL

)γ
(1 + ∆) + βαη

(
1 + ∆
yH

) 1
γ

, (109)

(ψx + ψy)yL =
(

(1 − ∆)(ψyyL)γ
(ψyyL)γ(yL + yH) − (βη)γ(1 + ∆)

) 1
γ

η + ψx

(
βη

ψyyL

)γ
(1 + ∆). (110)
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B.4 Proof of Result 2

Taylor Expansion Around Steady-State Values. Assume yH and yL are at their steady-state
values yH,0 and yL,0 respectively. For small deviations ∆ψx from the steady-state value of ψx, we
have:

yH ≈ yH,0 + ∂yH
∂ψx

∆ψx,

yL ≈ yL,0 + ∂yL
∂ψx

∆ψx,

Substitute into the Expression for pLH. The expression for pLH is:

pLH =
(

(1 − ∆)(ψyyL)γ
(ψyyL)γ(yL + yH) − (βη)γ(1 + ∆)

) 1
γ

.

Substitute the Taylor expansions for yH and yL:

pLH ≈
(

(1 − ∆)(ψy(yL,0 + δyL))γ
(ψy(yL,0 + δyL))γ (yL,0 + δyL + yH,0 + δyH) − (βη)γ(1 + ∆)

) 1
γ

,

where:
δyH = ∂yH

∂ψx
∆ψx,

δyL = ∂yL
∂ψx

∆ψx.

Simplify the Denominator. Expanding the denominator:

(ψy(yL,0 + δyL))γ ≈ (ψyyL,0)γ
(

1 + γ
δyL
yL,0

)
,

Denominator ≈ (ψyyL,0)γ (yL,0 + yH,0 + δyL + δyH) − (βη)γ(1 + ∆),

Simplify to:

Denominator ≈ (ψyyL,0)γ(yL,0 + yH,0) + (ψyyL,0)γ(δyL + δyH) − (βη)γ(1 + ∆).

Compute the Derivative. To find ∂pLH

∂ψx
:

∂pLH
∂ψx

≈ p
1
γ

−1
LH,0 · ∂

∂ψx

[
(1 − ∆)(ψyyL,0)γ

(ψyyL,0)γ(yL,0 + yH,0) + (ψyyL,0)γ(δyL + δyH) − (βη)γ(1 + ∆)

]
,

∂

∂ψx

[
A

B

]
=
B ∂A
∂ψx

− A ∂B
∂ψx

B2 ,

where A = (1 − ∆)(ψyyL,0)γ and B = (ψyyL,0)γ(yL,0 + yH,0) + (ψyyL,0)γ(δyL + δyH) − (βη)γ(1 + ∆).
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Since ∂A
∂ψx

= 0 and ∂B
∂ψx

= (ψyyL,0)γ
(
∂yL

∂ψx
+ ∂yH

∂ψx

)
:

∂pLH
∂ψx

≈ −p
1
γ

−1
LH,0 ·

(ψyyL,0)γ
(
∂yL

∂ψx
+ ∂yH

∂ψx

)
[(ψyyL,0)γ(yL,0 + yH,0) − (βη)γ(1 + ∆)]2

.

Condition for Decreasing pLH. For ∂pLH

∂ψx
< 0:

(ψyyL,0)γ
(
∂yL
∂ψx

+ ∂yH
∂ψx

)
> 0.

This implies:
∂yL
∂ψx

+ ∂yH
∂ψx

> 0.

Therefore, pLH decreases with ψx if the sum of the derivatives of yL and yH with respect to
ψx is positive.

C Equilibrium conditions for different values of ψy

We now turn to the results for the equilibrium conditions for different values ψy:

(a) Production in the Low-Demand state (L). (b) Production in the High-Demand state (H).

Figure 20: Production for different values of ψy.
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(a) The price in L, considering
the previous state was H.

(b) The price in H, considering
the previous state was H.

(c) The price in H, considering
the previous state was L.

Figure 21: Prices for different values of ψy.

Figure 22: Inventories across various states and different values of ψy.

(a) The quantity in L,
considering the previous
state was H.

(b) The quantity in H,
considering the previous
state was H.

(c) The quantity in H,
considering the previous
state was L.

Figure 23: Quantities for different values of ψy.

D Equilibrium conditions for different values of γ

Consider now the following parameters in Table 6:
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Parameter Description Value

ψx Cost to carry inventories 0.5
ψy Cost to produce 0.7
α Probability to continue in High-Demand 0.3
β Discount factor 0.95
∆ Demand shock 0.2
η Market power 0.5

Table 6: Model Parameters.

We now turn to the results for the equilibrium conditions for different values ψx and for two
different values of elasticity of demand γ:

(a) Production in the Low-Demand state (L). (b) Production in the High-Demand state (H).

Figure 24: Production for different values of ψx and two different values of γ.

(a) The price in L, considering
the previous state was H.

(b) The price in H, considering
the previous state was H.

(c) The price in H, considering
the previous state was L.

Figure 25: Prices for different values of ψx and two different values of γ.
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Figure 26: Inventories across various states and different values of ψx and two different values of γ.

Figure 27: Quantities for different values of ψx and two different values of γ.

Below we show the results for the equilibrium conditions for different values ψy and for two
different values of elasticity of demand γ:

(a) Production in the Low-Demand state (L). (b) Production in the High-Demand state (H).

Figure 28: Production for different values of ψy and two different values of γ.
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(a) The price in L, considering
the previous state was H.

(b) The price in H, considering
the previous state was H.

(c) The price in H, considering
the previous state was L.

Figure 29: Prices for different values of ψy and two different values of γ.

Figure 30: Inventories across various states and different values of ψy and two different values of γ.

Figure 31: Quantities for different values of ψy and two different values of γ.

E Dynamics in the Simple Model
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E.1 Dynamics for Different States in the Simple Model

Figure 32: Impulse Response Functions for the selected variables following a positive shock to ψx.

E.2 Dynamics after a negative shock in β

Below we show the same results for a persistent fall in β for 100 periods, after a fall of 30 % on
impact.
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Figure 33: Comparison of Impulse Response Functions for selected variables following a negative
shock in β.

Figure 34: Impulse Response Functions for the selected variables following a negative shock to β.
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E.3 Second-order moments in the Simple Economy

Table 7 summarizes the fist and second moments of the main variables in each of the cases analyzed
in Section 3.3. For each variable we report the steady state value, reported as "Mean" and the
standard deviation, referred here as "Std".

ψx β

yL Mean 0.813 0.813
Std 0.001 0.016

yH Mean 0.846 0.846
Std 0.000 0.022

pLH Mean 0.904 0.904
Std 0.003 0.003

pHH Mean 1.332 1.332
Std 0.000 0.011

pHL Mean 1.197 1.197
Std 0.001 0.015

xLH Mean 0.234 0.234
Std 0.004 0.018

qLH Mean 0.846 0.846
Std 0.000 0.022

qHH Mean 0.846 0.846
Std 0.000 0.022

qHL Mean 1.046 1.046
Std 0.002 0.030

Correlations
corr(pLH ,yL) -0.9997 0.1905
corr(pHH ,yH) -0.9493 -0.9493
corr(pHL,yH) -0.9492 -0.9479

Table 7: First and second moments for key variables under the following scenarios: a positive shock
in ψx and a negative shock in β.

We can observe that Table 7 confirms the IRFs regarding the selected variables. The volatility
of the variables is higher for the shock in β.

F Inventories in the demand function

Now consider the following demand function:

St(pt, xt) = S̄(pt)xξt , (111)
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where the only difference between this specification and the one represented by (7) is that in this
case holding inventories boost total demand. The timeline and the specification of the model will
be the same as above.

Therefore, the firm’s problem at period t can be stated as:

V (qt) = max
{pt,yt,xt}

ptSt(pt, xt) − ψy
y2
t

2 − ψx
x2
t+1
2 + βE [V (qt+1)] , (112)

subject to:
qt+1 = qt − St(pt, xt) + yt, (113)
xt+1 ≥ 0. (114)

In recursive formulation the problem above can be written as:

V (q) = max
{p,y}

pS(p, q − y−1) − ψy
y2

2 − ψx
(q − S(p, q − y−1))2

2 + βE [V (q′)] , (115)

subject to:
q′ = q − S(p, q − y−1) + y, (116)
x′ ≥ 0. (117)

Denote by µ the Lagrange multiplier associated with the inventories constraint given by
Equation (117).

By taking first-order conditions with respect to p and y, we obtain the following results,
respectively:

S(p, q − y−1) + pS1(p, q − y−1)
S1(p, q − y−1)

+ ψx(q − S(p, q − y−1)) = βE[V ′(q′)] + µ,

ψyy = βE[V ′(q′)].

Notice that V ′(q) = pS2(p, q− y−1) + (1 −S2(p, q− y−1)) (−ψx(q − S(p, q − y−1)) + βE[V ′(q′)] + µ).
Therefore, using the envelope condition and the aforementioned first-order conditions, we can
summarize the solution to this problem by the following equations:

S(p, q − y−1) + pS1(p, q − y−1)
S1(p, q − y−1)

+ ψx(q − S(p, q − y−1)) = ψyy + µ, (118)

ψyy = βE [p′S2(p′, q′ − y) + (1 − S2(p′, q′ − y)) (−ψx(q′ − S(p′, q′ − y)) + ψyy
′ + µ′)] , (119)

q′ = q − S(p, q − y−1) + y, (120)
µ(q − S(p, q − y−1)) = 0. (121)

Observe the elasticity price of demand is given by ES
p = pS1(p, q − y−1)

S(p, q − y−1)
, which implies we can

rewrite S(p) + pS1(p, q − y−1)
S1(p, q − y−1)

= S(p, q − y−1)
S1(p, q − y−1)

(1 + ES
p ).
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Using this expression and manipulating equations (118) - (121) we have:

ψyy =βE[p′S2(p′, q′ − y)] + β
S(p, q − y−1)
S1(p, q − y−1)

(1 + ES
p )E[(1 − S2(p′, q′ − y))]−

βψxyE[(1 − S2(p′, q′ − y))] + βψxE[(1 − S2(p′, q′ − y))S(p′, q′ − y)]+
βψyE[(1 − S2(p′, q′ − y))(y′ − y)] + βE[(1 − S2(p′, q′ − y))(µ′ − µ)]. (122)

Observe that in equilibrium we need to have x > 0, which implies µ = 0, otherwise we would
have pS(p, q − y−1) = 0. Assuming S̄(p) = 1

pγ
, and observing: qt+1 = yt + qt − xξ

t

pγ
t
. Therefore in

equilibrium we have:

y = xξ

pγ
.

Also observe we have q = x+ xξ

pγ . Using these observations, the equilibrium conditions of the model
are:

ψyy =βpξ(q − y)ξ−1

pγ
+ β

(
pγ − ξ(q − y)ξ−1

pγ

)
p

(
γ − 1
γ

)
, (123)

y = (q − y)ξ
pγ

, (124)

p

(
γ − 1
γ

)
+ ψx

(
q − (q − y)ξ

pγ

)
= ψyy. (125)

Take a simple case where we assume ξ = γ = 1. In this case the equilibrium, conditions are
the following ones:

p = ψy
ψx
,

y = β

ψy
,

q = β(ψy + ψx)
ψyψx

,

x = β

ψx
.

The signal of the derivatives with respect to ψx are such that:

∂p

∂ψx
< 0, ∂y

∂ψx
= 0, ∂q

∂ψx
< 0, ∂x

∂ψx
< 0.

Take the following parameters in Table 8:

The results below show the equilibrium conditions for different values ψx:
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Parameter Description Value

ψx Cost to carry inventories 0.5
ψy Cost to produce 0.7
ξ Inventories in the demand 1.0
β Discount factor 0.95
γ Elasticity of demand with respect to price 2.0

Table 8: Model Parameters.

(a) Production. (b) Price.

(c) Inventories. (d) Quantity.

Figure 35: Equilibrium conditions for different values of ψx.

Now we show the results of the equilibrium conditions for different values ψy:
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(a) Production. (b) Price.

(c) Inventories. (d) Quantity.

Figure 36: Equilibrium conditions for different values of ψy.

We now present the dynamics of the system after a Monetary Policy shock affecting either ψx
or β considering the calibration in Table 8. To ease the comparison and be able to see the differences
between the business cycle in both situations we keep the shock to be the same for both cases. Figure
37 shows the Impulse Response Functions for a persistent increase in ψx for the production, prices,
quantities, and inventories, respectively.
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Figure 37: Impulse Response Functions for the selected variables following a positive shock to ψx.

Notice that each panel reports the proportional change for the variable under consideration,
in percentage points. For instance, Panel 1 reports a persistent increase in ψx for 100 periods, after
an increase of 1 % on impact, except for the inventories, for which we compute the absolute variation.

Below we show the same results for a persistent fall in β for 100 periods, after a fall of 1 %
on impact.
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Figure 38: Impulse Response Function for the selected variables after a negative shock in β.

G Inventories in the demand function with demand shocks

Now consider the following demand function:

St(pt, xt) = S̄(pt)xξtεt, (126)

where the structure of the shocks and the transition matrix will have the same structure as the one
we considered above: a High-Demand shock (H) and a Low-Demand shock (L), denoted as:

ε =

1 + ∆ if shock = H,

1 − ∆ if shock = L.

In the scenario of a High-Demand shock (H), there’s a probability of α for the economy to
remain in the H state, with the remaining probability (1 − α) indicating a transition to the Low-
Demand state (L). Conversely, when the economy is in the L state, the probability of transitioning
to the H state is 1, while the probability of staying in the L state is 0. We summarize these transition
probabilities in the following transition matrix:

Π =
[
π(H|H) π(L|H)
π(H|L) π(L|L)

]
=
[
α 1 − α
1 0

]
.

Using the notation xIJ = x(I|J), where xIJ denotes the realization of variable x in state I
given the state J , and applying (119) for the case when the economy was in state H and is currently
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in state L, leads to:

ψyyLH = β[pHLS2(pHL, qHL − yLH) + (1 − S2(pHL, qHL − yLH))(−ψx(qHL − S(pHL, qHL − yLH))
+ ψyyHL + µHL)], (127)

where by observing qHL = qLH − S(pLH , qLH − yH) + yLH and using (118) we get:

S(pLH , qLH − yH)
S1(pLH , qLH − yH)(1 + ES

pLH
) + ψx(qLH − S(pLH , qLH − yH)) = ψyyLH + µLH ,

where by replacing this result in (127):

ψyyLH = β

pHLS2(pHL, qHL − yLH) + (1 − S2(pHL, qHL − yLH))
(
S(pLH , qLH − yH)
S1(pLH , qLH − yH)(1 + ES

pLH
) − ψyyLH

− ψxyLH + ψxS(pHL, qHL − yLH) + ψyyHL + µHL

). (128)

Now do the same for the case the economy was in state L and is currently in state H:

ψyyHL = β[αpHHS2(pHH , qHH − yHL) + (1 − α)pLHS2(pLH , qLH − yHL)]
− βψx(qHL − S(pHL, qHL − yLH))[α(1 − S2(pHH , qHH − yHL)) + (1 − α)(1 − S2(pLH , qLH − yHL))]
− βψxyHL[α(1 − S2(pHH , qHH − yHL)) + (1 − α)(1 − S2(pLH , qLH − yHL))]
+ βψx[α(1 − S2(pHH , qHH − yHL))S(pHH , qHH − yHL)+

(1 − α)(1 − S2(pLH , qLH − yHL))S(pLH , qLH − yHL)]
+ βψy[α(1 − S2(pHH , qHH − yHL))yHH + (1 − α)(1 − S2(pLH , qLH − yHL))yLH ]
+ β[α(1 − S2(pHH , qHH − yHL))µHH + (1 − α)(1 − S2(pLH , qLH − yHL))µLH ]. (129)

Using the same idea for the case the economy was in state H and is currently in state H we reach:

ψyyHH = β[αpHHS2(pHH , qHH − yHH) + (1 − α)pLHS2(pLH , qLH − yHH)]
− βψx(qHH − S(pHH , qHH − yH))[α(1 − S2(pHH , qHH − yHH)) + (1 − α)(1 − S2(pLH , qLH − yHH))]
− βψxyHH [α(1 − S2(pHH , qHH − yHH)) + (1 − α)(1 − S2(pLH , qLH − yHH))]
+ βψx[α(1 − S2(pHH , qHH − yHH))S(pHH , qHH − yHH)+

(1 − α)(1 − S2(pLH , qLH − yHH))S(pLH , qLH − yHH)]
+ βψy[α(1 − S2(pHH , qHH − yHH))yHH + (1 − α)(1 − S2(pLH , qLH − yHH))yLH ]
+ β[α(1 − S2(pHH , qHH − yHH))µHH + (1 − α)(1 − S2(pLH , qLH − yHH))µLH ]. (130)

Using (118) we get:

S(pHH , qHH − yH)
S1(pHH , qHH − yH)(1 + ES

pHH
) + ψx(qHH − S(pHH , qHH − yH)) = ψyyHH , (131)
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S(pHL, qHL − yLH)
S1(pHL, qHL − yLH)(1 + ES

pHL
) + ψx(qHL − S(pHL, qHL − yLH)) = ψyyHL, (132)

S(pLH , qLH − yH)
S1(pLH , qLH − yH)(1 + ES

pLH
) + ψx(qLH − S(pLH , qLH − yH)) = ψyyLH . (133)

Now observe we have the following:

q′
HH = qHH − S(pHH , qHH − yHH) + yHH ,

q′
HH = qHL − S(pHL, qHL − yLH) + yHL,

q′
HL = qLH − S(pLH , qLH − yHH) + yLH ,

q′
HL = qLH − S(pLH , qLH − yHL) + yLH ,

which means yHH = yHL ≡ yH . Lastly notice:

q′
LH = qHH − S(pHH , qHH − yHH) + yHH ,

q′
LH = qHL − S(pHL, qHL − yLH) + yHL,

which means q′
HH = q′

LH . Using the observations above, (131) and (132) it is easy to show that
pHH = pHL = pH . Now using the following notations: yLH ≡ yL, pLH = pL, q′

HH = q′
LH ≡ q−H ,

and q′
HL ≡ q−L and that in equilibrium yH = S(pH , q−H − yH), the equilibrium conditions from the

system represented by equations (128) - (133) is given by:

ψyyL = β

pHS2(pH , q−L − yL) + (1 − S2(pH , q−L − yL))
(
S(pL, q−H − yH)
S1(pL, q−H − yH)(1 + ES

pL
) − ψyyL

− ψxyL + ψxS(pH , q−L − yL) + ψyyH

). (134)

ψyyH = β[αpHS2(pH , q−H − yH) + (1 − α)pLS2(pL, q−H − yH)]
− βψx(q−L − S(pH , q−L − yL))[α(1 − S2(pH , q−H − yH)) + (1 − α)(1 − S2(pL, q−H − yH))]
− βψxyH [α(1 − S2(pH , q−H − yH)) + (1 − α)(1 − S2(pL, q−H − yH))]
+ βψx[α(1 − S2(pH , q−H − yH))S(pH , q−H − yH)+

(1 − α)(1 − S2(pL, q−H − yH))S(pL, q−H − yH)]
+ βψy[α(1 − S2(pH , q−H − yH))yH + (1 − α)(1 − S2(pL, q−H − yH))yL]. (135)

S(pH , q−H − yH)
S1(pH , q−H − yH)(1 + ES

pH
) + ψx(q−H − S(pH , q−H − yH)) = ψyyH . (136)
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S(pL, q−H − yH)
S1(pL, q−H − yH)(1 + ES

pL
) + ψx(q−H − S(pL, q−H − yH)) = ψyyL. (137)

yH = S(pH , q−H − yH). (138)

q−L = q−H − S(pL, q−H − yH) + yL. (139)

By taking the case where ∆ = 0 and ξ = γ = 1 we reach the same solution we had in the
simple case represented by the solution to the problem (123) - (125):

pH = pL = ψy
ψx
,

yH = yL = β

ψy
,

q−H = q−L = β(ψy + ψx)
ψyψx

,

xH = xL = β

ψx
.

By letting ξ = γ = 1 we are able to solve the system represented by (134) - (139) and we
can show that ∂pi

∂ψx
< 0 and ∂xi

∂ψx
< 0, for i ∈ {L,H}.

Take the following parameters in Table 9:

Parameter Description Value

ψx Cost to carry inventories 0.5
ψy Cost to produce 0.7
α Probability to continue in High-Demand 0.5
ξ Inventories in the demand 1.0
β Discount factor 0.95
∆ Demand shock 0.2
γ Elasticity of demand with respect to price 2.0

Table 9: Model Parameters.

The results below show the equilibrium conditions for different values ψx:
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(a) Production for different values of ψx. (b) Price for different values of ψx.

(c) Inventories for different values of ψx. (d) Quantity for different values of ψx.

(e) Demand for different values of ψx.

Figure 39: Equilibrium conditions for different values of ψx across different states.

Now we show the results of the equilibrium conditions for different values ψy:
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(a) Production for different values of ψy. (b) Price for different values of ψy.

(c) Inventories for different values of ψy. (d) Quantity for different values of ψy.

(e) Demand for different values of ψy.

Figure 40: Equilibrium conditions for different values of ψy across different states.

We now present the dynamics of the system after a Monetary Policy shock affecting either
ψx or β considering the calibration in Table 9. To ease the comparison and be able to see the
differences between the business cycle in both situations we keep the shock to be the same for
both cases. Figure 41 shows the Impulse Response Functions for a persistent increase in ψx for the
production, prices, quantities, and inventories, respectively. Figure 42 shows the same results but
comparing the different states.
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Figure 41: Impulse Response Functions for the selected variables following a positive shock to ψx.

Figure 42: Comparison of Impulse Response Functions for selected variables following a positive
shock in ψx.

Notice that each panel reports the proportional change for the variable under consideration,
in percentage points. For instance, Panel 1 reports a persistent increase in ψx for 100 periods, after
an increase of 1 % on impact, except for the inventories, for which we compute the absolute variation.
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Below we show the same results for a persistent fall in β for 100 periods, after a fall of 1 %
on impact.

Figure 43: Impulse Response Functions for the selected variables following a negative shock to β.

Figure 44: Comparison of Impulse Response Functions for selected variables following a negative
shock in in β.

The relationship between inventory holding costs, represented by ψx, and production levels
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(yL in low demand, yH in high demand) can be understood through inventory management and
production planning strategies.

When ψx is low, the cost of holding inventory is minimal. Firms tend to maintain larger
inventories, which keeps prices high and demand lower. As inventory costs rise, firms lower prices
to clear out excess stock, but not enough to significantly boost demand. Consequently, they reduce
production and rely more on existing inventory to meet sales, resulting in steady production levels
with minimal adjustments to demand fluctuations.

In contrast, when ψx is high, holding inventory becomes costly. Firms reduce inventory levels
and adopt a just-in-time production approach, producing goods closer to the time they are needed.
This increased production flexibility allows them to meet demand directly without maintaining
large inventories. Lower prices in this scenario stimulate higher demand, prompting firms to boost
production to manage the increased demand effectively.

Firms balance the trade-off between inventory holding costs and production costs. With low
ψx, the emphasis is on holding more inventory and maintaining steady production. With high ψx,
the focus shifts to minimizing inventory and increasing production flexibility.

For instance, a retailer with fluctuating demand will keep large stocks and produce less
frequently when inventory costs are low. Conversely, when inventory costs are high, the retailer
minimizes stock and produces more frequently to avoid high holding costs.

Overall, changes in ψx lead to different strategies for managing production and inventory,
resulting in a non-linear relationship between ψx and production levels (yL and yH).

H Steady State Quantitative Model

Discretization of the model. We define the following aggregate variables: Aggregate Price (P ),
Aggregate Labor (L), Aggregate Sales (S), Inventories (X), Quantity (Q), Aggregate Profits (Θ),
Consumption (C), and the Pricing Kernel (λ).

Using these, we define the vector X = {P 0,L0,S, P, L, S,X,Q,Θ, C, λ}. The distribution
of firms is discretized using a histogram S, as described in Young (2010), with S′ = Πε×εS, where
Πε×ε represents the transition matrix implied by the decision rules.

First, we discretize the policy rules (p0, l0) using the vectors P 0 and L0, respectively. These
policy rules must satisfy the Euler equations for each q and ε, or meet the relevant constraints.

Thus, the equilibrium conditions must exhibit dynamics such that:

F (X ′, X, η′, z′) = 0,

where η is a vector of expectation errors. By expressing the system in this form, we know how to
solve it. Note that the approximate equilibrium conditions form a system of 3nqnε + 8 equations,
where nq is the number of grid points for quantity, nε is the number of grid points for demand
shocks, and the number 8 corresponds to our aggregate variables.
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The expectation errors arise from the aggregate productivity shock, and the expectation
operator E can be rewritten as:

ES−1,Z,Λ(x) = x+ η.

We have as many expectation operators as we have Euler equations. Finally, we can replace
the aggregate state (Z,Λ) with (Z,S) and compute the recursive competitive equilibrium.

Computing the recursive competitive equilibrium. Our goal is to solve:

F (X∗, X∗, 0, 0) = 0.

In order to solve for the steady state, we adopt the following algorithm. The problem consists
of solving a system of equations. The steady state is solved using 10 idiosyncratic demand shocks
and 100 points in the quantity grid.

First, note that the demand each firm faces is given by:

S(q, ε;Z,Λ) = 1
p(q, ε;Z,Λ)γ εP (Z,Λ)γS(Z,Λ).

The algorithm to find the steady-state allocation consists of solving a root-finding problem
in the wage w(Z,Λ) and the total sales S(Z,Λ). In other words, our goal is to find a wage that
equalizes labor supply and demand, and a value for S(Z,Λ) such that, when we solve the problem
for individual firms and aggregate their optimal results, the sum of the individual firms’ optimal
sales equals S(Z,Λ).

To solve for the stationary recursive competitive equilibrium, we set Π = 1, Z = 1, and we
assume that the final good is the numeraire in this economy, meaning the price will be such that
P (Z,Λ) = 1.

The algorithm is as follows:

1. First, guess a value for w and S. Solve the individual firm’s problem as defined in equations
(58) - (61), using Value Function Iteration or the Endogenous Grid Method.

2. Using the policy rules, determine the stationary distribution by iterating on the law of motion.

3. Determine the labor demand for each level of quantity and idiosyncratic demand shocks.
Then, aggregate labor demand using the stationary distribution of firms over quantity and
idiosyncratic demand shocks to obtain:

�
l(q, ε;Z,Λ) dε dΛ(q × ε).

4. Determine the price chosen for each level of quantity and idiosyncratic demand shocks. Then,
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aggregate the price using:

P (Z,Λ) =
(�

p(q, ε;Z,Λ)1−γε dε dΛ(q × ε)
) 1

1−γ

.

5. Finally, calculate the following aggregate:

S(Z,Λ) =
(� 1

0
S(q, ε;Z,Λ)

γ−1
γ dε dΛ(q × ε)

) γ
γ−1

.

6. Using the value of consumption:

C(Z,Λ) =
(

1 − κ

2 (Π(Z,Λ) − 1)2
)
S(Z,Λ) − ψx

2

�
x(q, ε;Z,Λ)2 dε dΛ(q × ε),

calculate labor supply as:

L(Z,Λ) =
(
w(Z,Λ)
χC(Z,Λ)

)ϕ
.

7. The goal is to solve for a wage w∗ such that:
�
l(q, ε;Z,Λ) dε dΛ(q × ε) = L(Z,Λ),

and a value S∗ such that P (Z,Λ) = 1.

8. We solve for these two values using a root-finding algorithm.

Linearization. The function F (X ′, X, η′, z′) is numerically differentiated around the non-
stochastic steady state X = X ′ = X∗, resulting in the following partial derivatives:

F1 =
(
∂F

∂X ′

)
X=X∗

,

F2 =
(
∂F

∂X

)
X=X∗

,

F3 =
(
∂F

∂η′

)
X=X∗

,

F4 =
(
∂F

∂z′

)
X=X∗

.

Therefore, the equation can be written as:

F1(X ′ −X∗) + F2(X −X∗) + F3η
′ + F4z

′ = 0.
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The system can be reformulated using the methodology in Sims (2002) as:

Λ0y
′ = Λ1y + C + ψz′ + ϕη′,

where y′ = X ′ −X∗, Λ0 = −F1, Λ1 = −F2, C = 0, ψ = F3, and ϕ = F4. The outcome of the
method in Sims (2002) are the matrices A and B such that:

y′ = Ay +Bz′.

The linearization and perturbation methods are automatically handled by Dynare (Adjemian et al.
(2011)). Dynare computes the partial derivatives and then solves the system.

Below, we present the steady-state values of the individual decisions of firms along the
quantity and demand shocks schedule:

Figure 45: Policy functions of individual firm’s problem.

I Preference Shocks in β
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I.1 Dynamics for β with Interest rate shock

In Figure 46, we show the equilibrium conditions for the selected variables following a negative shock
in β.

Figure 46: Impulse Response Functions for the selected variables following a negative shock to β.
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I.2 Dynamics for β with Monetary Policy

Figure 47: Impulse Response Functions for the selected variables following a negative shock in β.

J Monetary Policy and Shocks in ψx and Z

We now examine an economy where monetary policy is implemented via a Taylor rule as in

RN
t

RN
=
(

Πt

Π

)ϕΠ

, (140)

where RN is the steady-state nominal interest rate, Π is the steady-state inflation rate, and ϕΠ is
the response of the nominal interest rate to inflation.

First, we compare two scenarios: one where the Central Bank adopts a policy rule according
to the Taylor Rule with ϕΠ = 1.5 as in Galí (2015) and reacts to deviations from the steady-state
inflation rate set at Πt = 1, and another where there is a pesisent shock to the nominal interest rate
as discussed in Section 5.2.

The goal is to assess the effects of the endogenous response of monetary policy and to
understand the model dynamics under different inflation paths. When the Taylor Rule is applied,
as expected, all selected variables exhibit lower volatility and return more quickly to their steady-
state values. In particular, the Taylor Rule helps stabilize inflation, preventing it from becoming
excessively volatile.

Following a positive shock in ψx, the level of inventories decreases, but the reduction in prices
is less pronounced compared to the scenario where agents can anticipate the path of interest rate.
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This outcome highlights the Taylor Rule’s role in minimizing deviations from steady-state values,
thereby moderating the impact on prices.

Those results are depicted in Figure 48 for a positive shock in ψx.26

ψx Z
ϕΠ = 1.5 ϕΠ = 1.5

w Mean 1.000 1.006
Std 0.001 0.017

Π Mean 1.001 1.000
Std 0.159 0.042

X Mean 0.318 0.322
Std 0.012 0.047

C Mean 1.585 1.602
Std 0.006 0.036

L Mean 0.262 0.261
Std 0.002 0.009

Q Mean 0.876 0.882
Std 0.004 0.020

Y Mean 0.558 0.560
Std 0.001 0.006

GDP Mean 1.619 1.636
Std 0.006 0.035

Correlations
corr(X,Π) 0.9585 -0.9321
corr(X,X−1) 0.9452 0.8953
corr(GDP,GDP−1) 0.9532 0.9670

Table 10: First and second moments for key variables are provided for the following scenarios: a
shock to ψx with a Taylor rule (ϕΠ = 1.5) and a shock to Z with a Taylor rule (ϕΠ = 1.5).

26Similar results are found when we apply a negative shock in β as we can see in Appendix I.2
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Figure 48: Impulse Response Functions for selected variables following a positive shock in ψx.

We now compare the dynamics of the economy under a negative TFP shock with and without
the implementation of the Taylor rule. The results are shown in Figure 49. While the introduction
of monetary policy reduces volatility across most variables, it does not mitigate inflation, which
actually increases more compared to a scenario without monetary policy intervention.

Figure 49: Impulse Response Functions for selected variables following a negative shock in Z.
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These findings are confirmed by the second-order moments presented in columns (1) and (2)
of Table 10.

Finally, we compare two distinct situations: one with a low level of inventories and another
with a higher level after a positive shock in ψx. We observe that, under the Taylor rule, the decrease
in prices is similar across both inventory levels. This outcome occurs because the Taylor rule aims
to minimize deviations from the steady-state inflation rate. Consequently, the paths of the selected
variables are similar in both cases, as the Taylor rule effectively moderates the impact of monetary
policy shocks. Figure 50 shows the IRFs.

Figure 50: Impulse Response Functions for selected variables following a positive shock in ψx with
a Taylor Rule of ϕΠ = 1.5, compared for two distinct levels of inventories.

In order to understand the model dynamics when inflation follows a different path, we
examine two inventory levels, higher and lower, in a scenario where the Taylor rule coefficient is
set to ϕΠ = 1.01. This represents a situation where the endogenous response of monetary policy
is weaker. The IRFs for this case are shown in Figure 51. By comparing Panel 3 of Figure 51
with Panel 3 of Figure 50, we observe that a lower Taylor coefficient results in a greater divergence
between the two inflation paths. This indicates that the less hawkish the Central Bank, the more
inventories influence the inflation trajectory. Consequently, the cost of carrying inventories will have
a larger effect in decreasing inflation.
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Figure 51: Impulse Response Functions for selected variables following a positive shock in ψx with
a Taylor Rule of ϕΠ = 1.01, compared for two distinct levels of inventories.

This occurs because the model already incorporates a natural mechanism through firms’
price-setting decisions that helps reduce inflation. This result suggests that monetary contractions
reduce inflation more effectively when inventory levels are high, implying that central banks may
not need to pursue overly aggressive tightening when inventory levels are elevated.27

K TFP Shock

We compare two scenarios following a negative shock in Z: one with low inventory levels and
another with higher inventory levels. We observe that, under the Taylor rule, prices increase
more when inventories are lower. This suggests that a negative TFP shock heightens the need
to boost inventories, and the lower the inventory level, the higher the prices required to achieve this.
Consequently, under such a shock, the Taylor rule seems less effective in moderating inflation, with
inventories playing a more crucial role in stabilizing the economy. The Impulse Response Functions
(IRFs) illustrating these dynamics are shown in Figure 52.

27In Appendix K we show the same exercise for the case where we have a negative shock in Z.
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Figure 52: Impulse Response Functions for selected variables following a negative shock in Z with
a Taylor Rule of ϕΠ = 1.5, compared for two distinct levels of inventories.

To analyze how inflation dynamics change under different conditions, we examine two
inventory levels—high and low—while setting the Taylor rule coefficient to ϕΠ = 1.01. This
coefficient represents a weaker endogenous response of monetary policy. The IRFs for this scenario
are shown in Figure 53. By comparing Panel 3 of this figure with Panel 3 of Figure 52, we observe
that a lower Taylor coefficient leads to similar inflation paths. This suggests that the Taylor
rule’s effectiveness as a stabilization mechanism diminishes under a TFP shock when inventories
are considered.
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Figure 53: Impulse Response Functions for selected variables following a positive shock in ψx with
a Taylor Rule of ϕΠ = 1.01, compared for two distinct levels of inventories.

L Empirical evidence from the housing market

L.1 Constructing a housing inventory metric

Our empirical exercise in Section 6 investigates whether the response of the cost of housing (to
monetary policy shocks) differs depending on the size of the housing inventory “INVt”, the fraction
of homes that is not being occupied. The US Census Bureau produces two series which are getting at
this concept: one for rental properties (FRED code: RRVRUSQ156N) and one for owner-occupied
properties (FRED code: RHVRUSQ156N). These two series are highly correlated (with a correlation
coefficient of 0.74), which is intuitive. We proceed by combining these two series into a single
“home vacancy rate”, which is constructed as a weighted-average between the two – with the weight
determined by the homeownership rate (FRED code: RSAHORUSQ156S). Finally, since the original
series are only available at the quarterly frequency, we use linear interpolation to obtain a monthly
series. Given the high degree of persistence in the quarterly series (an autocorrelation coefficient of
0.96 at the quarterly frequency), this is unlikely to be a major issue.

L.2 IRFs for standard variables

As mentioned in the main text, the Bauer-Swanson monetary policy shock series produces intuitive
responses in core variables – building confidence that the series captures true monetary policy shocks.
Figures 54 - 57 show IRFs that follow from estimating the equivalent of (68) for different dependent
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variables Y :

∆hYt+h = αh + βhMPSt + δhXt + ϵt,h, (141)

where the dependent variable Y enters (141) in natural logs, except for the rate of unemployment
(for which outcomes are therefore in percentage points). To be consistent with the analyses featured
in the main body of the text, we control for lags of the monetary policy shock in Xt – so that the
righ- thand side of (141) always contains 12 months worth of (lagged) MPS-realizations.

First, Figure 54 captures the response of the CPI (FRED code: CPIAUCSL), which aligns
with conventional prior notions of what the response should look like in response to a monetary
policy shock; the same can be said for the response of the industrial production index (FRED code:
INDPRO) in Figure 55 and the rate of unemployment in Figure 56 (although the point estimate is
never significantly different from zero; however, by performing a joint-test a la Inoue et al. (2023),
we are able to reject the hypothesis that monetary policy shocks have no impact on unemployment
at the 1% significance level). Finally, Figure 57 depicts the response of the US equity index (FRED
code: SPASTT01USM661N, which is for the S&P500 index). Here, it is comforting to see that the
entire impact gets priced in quickly, leading to a flat profile of the IRF as time passes (consistent
with the Efficient Market Hypothesis).
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Figure 54: Response of US CPI to a 25-bp contractionary monetary policy shock, estimated via equation (141).
Shaded area represents the 90% confidence interval, calculated via Newey-West standard errors.
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Figure 55: Response of US industrial production to a 25-bp contractionary monetary policy shock, estimated via
equation (141). Shaded area represents the 90% confidence interval, calculated via Newey-West standard errors.
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Figure 56: Response of US unemployment rate to a 25-bp contractionary monetary policy shock, estimated via
equation (141). Shaded area represents the 90% confidence interval, calculated via Newey-West standard errors.
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Figure 57: Response of US equity index to a 25-bp contractionary monetary policy shock, estimated via equation
(141). Shaded area represents the 90% confidence interval, calculated via Newey-West standard errors.

L.3 Robustness of main result

Our main finding, that the cost of housing is more sensitive to monetary policy shocks when the
home vacancy rate is higher, is very robust. Here, we document some of the robustness exercises we
have conducted.

First, our main result is robust to controlling for the state of the business cycle (as proxied
by the rate of unemployment) within the controls vector Xt in equation (67); see Figure 58. This
suggests that the effect we are picking up is not driven by variations in the state of the business
cycle.
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Figure 58: Additional response of CPI OER to a 25-bp contractionary monetary policy shock, due to a 1-pp increase
in the home vacancy rate, estimated via equation (67) with the rate of unemployment added to the vector of controls
(Xt). The figure plots γ̂h. Shaded area represents the 90% confidence interval, calculated via Newey-West standard
errors.

Along similar lines, a very similar IRF emerges when adding 12 monthly lags of the dependent
variable “HC”, the CPI OER series, to the vector of controls Xt (Figure 59) or when enriching Xt

with 12 monthly lags of the overall CPI alongside industrial production (Figure 60). The fact
that adding these controls does relatively little to subsequent findings confirms the notion that the
underlying Bauer-Swanson series is well-orthogonalized with respect to available data – cutting the
need to include covariates.

Replicating our baseline analysis when using the housing-related component of the PCE index
as dependent variable produces an even stronger result (in the sense of being larger in magnitude
and more persistent; see Figure 61). At the same time, our core result also shows up when using
the overall CPI as dependent variable (Figure 62), which is perhaps not that surprising given OER
accounting for about one-quarter of the aggregate.
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Figure 59: Additional response of CPI OER to a 25-bp contractionary monetary policy shock, due to a 1-pp increase
in the home vacancy rate, estimated via equation (67) with lags of CPI OER added to the vector of controls (Xt).
The figure plots γ̂h. Shaded area represents the 90% confidence interval, calculated via Newey-West standard errors.
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Figure 60: Additional response of CPI OER to a 25-bp contractionary monetary policy shock, due to a 1-pp increase
in the home vacancy rate, estimated via equation (67) with lags of overall CPI and industrial production added to
the vector of controls (Xt). The figure plots γ̂h. Shaded area represents the 90% confidence interval, calculated via
Newey-West standard errors.
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Figure 61: Additional response of the housing component of the PCE index to a 25-bp contractionary monetary
policy shock, due to a 1-pp increase in the home vacancy rate, estimated via equation (67). The figure plots γ̂h.

Shaded area represents the 90% confidence interval, calculated via Newey-West standard errors.
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Figure 62: Additional response of CPI to a 25-bp contractionary monetary policy shock, due to a 1-pp increase in
the home vacancy rate, estimated via equation (67). The figure plots γ̂h. Shaded area represents the 90% confidence
interval, calculated via Newey-West standard errors.

Our main result also obtains when approaching the question via a different method. Next
to considering an interaction effect (as done in the main text), one could also follow Auerbach &
Gorodnichenko (2012) and Tenreyro & Thwaites (2016) by carrying out a state-dependent analysis.
In that case, we estimate:
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∆h lnHCt+h = F (INVt)
[
αh + βhMPSt + δhXt

]
, (142)

+ [1 − F (INVt)]
[
αh + βhMPSt + δhXt

]
+ ϵt,h

where overlines (underlines) indicate coefficient estimates when the housing vacancy rate “INVt”
is high (low). To maintain consistency with our exercise in the main text, the vector of controls
continues to include a year worth of monthly lags of the monetary policy shock. The probability of
being in the high regime is calculated via the logistic function:

F (INVt) = exp (θ(INVt − c)/σINV )
1 + exp (θ(INVt − c)/σINV ) ,

where we take c to be the median of INVt over our sample period, while we pick a standard value for
θ = 1.5 (which governs the intensity of regime switching); σINV represents the standard deviation
of INVt.

Figure 63 plots the results of this exercise. The coefficient estimates β̂h and β̂h, depicted in
the figure, trace out the average IRFs to monetary policy shocks depending on whether the housing
vacancy rate was “high” (i.e., F (INVt) ≈ 1) or “low” (i.e., F (INVt) ≈ 0) at the time of the shock.
As one can see, this exercise supports the conclusion that stems from the interactive regression
reported in the main text: contractionary monetary policy shocks do more to lower the cost of
housing when the housing vacancy rate stands at a higher level. In fact, when the housing market is
tight (low INVt), landlords seem able to pass-on increases in their cost of borrowing – which would
only add to inflation (potentially generating a “price puzzle” in the aggregate).
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Figure 63: Responses of CPI OER to a 25-bp contractionary monetary policy shock, estimated via equation (142).
The figure plots β̂h and β̂h. Shaded areas represent the 90% confidence intervals, calculated via Newey-West standard
errors.
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